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Experiment Manager: Use Bayesian optimization in custom training
experiments
With Experiment Manager, you can now use Bayesian optimization to determine the best combination
of hyperparameters for a custom training experiment. Previously, custom training experiments only
supported sweeping hyperparameters. Bayesian optimization requires Statistics and Machine
Learning Toolbox™. For more information, see “Use Bayesian Optimization in Custom Training
Experiments”.

Experiment Manager: Run deep learning experiments in your web
browser using MATLAB Online
Starting in R2021b, you can use Experiment Manager in MATLAB® Online. To run an experiment in
parallel using MATLAB Online, you must have access to a Cloud Center cluster. For more information,
see “Use Parallel Computing Toolbox with Cloud Center Cluster in MATLAB Online” (Parallel
Computing Toolbox).

Experiment Manager: Improved accessibility with keyboard shortcuts
You can now use keyboard shortcuts to navigate Experiment Manager when using a mouse is not an
option. For more information, see “Keyboard Shortcuts for Experiment Manager”.

Experiment Manager: Stop experiments faster by discarding the
results of running trials
When stopping a built-in training experiment that uses exhaustive sweep, you now have the option of
discarding the results of any running trials. Experiment Manager provides two options for stopping
experiments:

•
 Stop marks any running trials as Stopped and saves their results. When the experiment

stops, you can display the training plot and export the training output for these trials.
•

 Cancel marks any running trials as Canceled and discards their results. When the
experiment stops, you cannot display the training plot or export the training output for these
trials.

Both options save the results of any completed trials and cancel any queued trials. Typically, Cancel
is faster than Stop. For more information, see “Stop and Restart Training”.

Simulink Blocks: Simulate and generate code for deep learning object
detectors
Simulate and generate code for deep learning object detectors in Simulink®. The Analysis &
Enhancement block library from Computer Vision Toolbox™ now includes the Deep Learning Object
Detector (Computer Vision Toolbox) block. This block predicts bounding boxes, class labels, and
scores for the input image data by using a specified trained object detector. This block enables you to
load a pretrained object detector into the Simulink model from a MAT file or a MATLAB function.
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For more information about working with the Deep Learning Object Detector block, see “Lane and
Vehicle Detection in Simulink Using Deep Learning”. To learn more about using deep learning with
Simulink, see “Deep Learning with Simulink”.

Deep Network Designer: Export trained network to Simulink
Export networks trained in Deep Network Designer to Simulink. Export a trained network from the
Training tab by clicking Export > Export to Simulink.

Deep Network Designer: Analyze for dlnetwork
Deep Network Designer now supports analyzing networks for usage with dlnetwork objects. For
example, analyzing for dlnetwork objects checks that the network does not have any output layers.
Use this feature when you train a network outside of Deep Network Designer, by using a custom
training loop.

To analyze a network for dlnetwork usage, click Analyze > Analyze for dlnetwork. Doing so is
equivalent to using the analyzeNetwork function with the name-value argument TargetUsage set
to "dlnetwork" (available in R2021a).

1-D Convolutional Networks: Create and train networks with 1-D
convolution and pooling layers for sequence and time-series data
Create and train deep learning networks with 1-D convolution and pooling layers for sequence and
time series data.

Create networks using the following layers:

• convolution1dLayer
• averagePooling1dLayer
• maxPooling1dLayer
• globalAveragePooling1dLayer
• globalMaxPooling1dLayer

The dimension that the layers convolve or pool over depends on the layer input:

• For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps, respectively), the layer convolves or pools over the time
dimension.

• For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations, respectively), the layer convolves or pools over the spatial dimension.

• For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps, respectively), the layer convolves or pools over the spatial
dimension.

For an example showing how to train a sequence-to-label classification network using 1-D
convolutions, see “Sequence Classification Using 1-D Convolutions”.
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For an example showing how to train a sequence-to-sequence classification network using 1-D
convolutions, see “Sequence-to-Sequence Classification Using 1-D Convolutions”.

1-D Convolutional Networks: Specify minimum sequence length
When you create a network that downsamples data in the time dimension, you must take care that
the network supports your training data and any data for prediction. Some deep learning layers
require that the input has a minimum sequence length. For example, a 1-D convolution layer requires
that the input has at least as many time steps as the filter size.

As a time series of sequence data propagates through a network, the sequence length can change.
For example, downsampling operations such as 1-D convolutions can output data with fewer time
steps than the input. Consequently, downsampling operations can cause later layers in the network to
throw an error because the data has a shorter sequence length than the minimum length required by
the layer.

When you train or assemble a network, the software automatically checks that sequences of length 1
can propagate through the network. Some networks might not support sequences of length 1, but can
successfully propagate sequences of longer lengths. To check that a network supports propagating
your training or prediction data, set the MinLength property of sequenceInputLayer to a value
less than or equal to the minimum length of your data and the expected minimum length of your
prediction data.

Recurrent Neural Networks: Pass recurrent layer states between
layers
Pass recurrent states to and from recurrent layers by connecting them to the state input and outputs
of the layer.

When you use lstmLayer, bilstmLayer, or gruLayer, to specify that the layer has state inputs,
set the HasStateInputs property of the layer to 1 (true). To specify that a recurrent layer has state
outputs, set the HasStateOutputs property of the layer to 1 (true).

For an example showing how to train a neural network for language translation that passes the
recurrent state of an LSTM layer between layers, see “Language Translation Using Deep Learning”.

Network Training: Create layer graphs without specifying layer names
Starting in R2021b, specifying layer names when you create a layer graph is optional.

Network Training: Return network with lowest validation loss
When training a neural network using the trainNetwork function, output the network with the
lowest validation loss by setting the OutputNetwork name-value argument of the
trainingOptions function to "best-validation-loss".

Network Analyzer: Use example inputs when analyzing networks for
custom training workflows
You can now provide example network inputs when you use the analyzeNetwork function to analyze
networks for custom training workflows.
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Use example inputs when you want to analyze a network that has inputs that are unconnected to an
input layer. The software propagates the example inputs through the network to determine the
number and sizes of layer activations, learnable parameters, and state parameters.

Provide example network inputs as formatted dlarray objects with the same size and format as
typical inputs for your network. For more information, see analyzeNetwork.

MEX Acceleration: Use MEX acceleration with multi-input and multi-
output networks
Use automatically generated MEX functions to accelerate prediction, classification, and feature
extraction of multi-input and multi-output DAGNetwork objects. You can apply MEX acceleration
using the name-value option Acceleration="mex" in the following functions:

• activations
• classify
• predict

Residual Networks: Easily create 2-D and 3-D residual networks
Create residual networks for 2-D and 3-D image classification using resnetLayers and
resnet3dLayers.

Neural Network Apps: New toolstrip design for improved usability
The Neural Net Fitting (nftool), Neural Net Pattern Recognition (nprtool), Neural Net
Clustering (nctool), and Neural Net Time Series (ntstool) apps have been updated with new
user interfaces. The new toolstrip design makes the apps easier to use and speeds up your workflow.

Function Layer: Create layers that apply a function to the input
A function layer applies a specified function to the layer input. If Deep Learning Toolbox does not
provide the layer that you need for your task, then you can define new layers by creating function
layers using functionLayer.

For example, to create a layer that applies the exp function to the input, use the following.

layer = functionLayer(@exp);

For an example showing how to import the layers of a pretrained TensorFlow™-Keras network and
replace the unsupported softsign layers with a function layer, see “Replace Unsupported Keras Layer
with Function Layer”.

Function layers only support operations that do not require additional properties, learnable
parameters, or states. For layers that require this functionality, define the layer as a custom layer. For
more information, see “Define Custom Deep Learning Layers”.
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Parallel Inference: Predict, classify, and extract features in parallel
with DAGNetwork and SeriesNetwork objects
You can now use multiple GPUs or multiple CPUs to accelerate prediction, classification, and feature
extraction with DAGNetwork and SeriesNetwork objects. Previously, prediction, classification, and
feature extraction supported single GPU or single CPU execution only.

The following functions now support running in parallel:

• activations
• classify
• predict

To run in parallel, set the ExecutionEnvironment name-value option to "multi-gpu" or
"parallel". The "multi-gpu" option allows you to process mini-batches of data in parallel using
multiple GPUs in your local machine. The "parallel" option allows you to process data in parallel
using a local or remote cluster. If you are using a remote cluster that has access to multiple GPUs,
use the "parallel" option.

The "multi-gpu" and "parallel" options do not support recurrent neural networks (RNNs)
containing lstmLayer, bilstmLayer, or gruLayer objects.

Parallel Training: Improved instructions for deep learning in the cloud
MathWorks® provides several ways of accessing MATLAB in public clouds such as Amazon® Web
Services (AWS®) and Azure® that are configurable depending on your needs.

These cloud offerings make it easy for you to run your MATLAB deep learning applications in the
cloud. For more information, see “Deep Learning in the Cloud”.

Custom Layers: Define stateful custom layers
Define stateful custom layers by specifying the State attribute in a properties block and
specifying the state parameters in the predict and the optional forward and backward functions.

For nested layer workflows (custom layers with dlnetwork objects as learnable parameters), if the
nested network is stateful, then specify the network parameter in a properties block with both the
attributes Learnable and State.

For an example showing how to define a custom peephole LSTM layer, see “Define Custom Recurrent
Deep Learning Layer”.

For more information about custom layers, see “Define Custom Deep Learning Layers”.

Custom Training Loops: Apply neural ODE operations
The neural ordinary differential equation (ODE) operation returns the solution of a specified ODE. In
particular, given an input, a neural ODE operation outputs the numerical solution of the ODE
y′ = f (t, y, θ) for the time horizon (t0,t1) and with initial condition y(t0) = y0, where t and y denote the
ODE function inputs and θ is a set of learnable parameters. Typically, the initial condition y0 is either
the network input or the output of another deep learning operation.
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To apply the neural ODE operation to dlarray objects, use the dlode45 function.

For an example showing how to train an image classification model using an augmented neural ODE,
see “Train Neural ODE Network”. For an example showing how to train a neural network with a
neural ODE to learn the dynamics of a physical system, see “Dynamical System Modeling Using
Neural ODE”.

Custom Training Loops: Calculate L1 and L2 loss
Calculate the L1 and L2 loss using the l1loss and l2loss functions, respectively.

The L1 loss operation computes the L1 loss given network predictions and target values. When the
Reduction option is "sum" and the NormalizationFactor option is "batch-size", the
computation yields as the mean absolute error (MAE).

The L2 loss operation computes the L2 loss (based on the squared L2 norm) given network predictions
and target values. When the Reduction option is "sum" and the NormalizationFactor option is
"batch-size", the computation yields the mean squared error (MSE).

For an example showing how to train a neural network with a neural ODE to learn the dynamics of a
physical system by minimizing the L1 loss, see “Dynamical System Modeling Using Neural ODE”.

Custom Training Loops: Use MEX acceleration to optimize
performance for dlnetwork prediction
Use automatically generated MEX functions to accelerate predictions of dlnetwork outputs using
the predict function. The software generates a MEX function to optimize performance when making
multiple calls to the predict function.

To enable MEX acceleration for the predict function, specify the name-value option
Acceleration="mex".

For example, making predictions using the following test is about 3.4x faster when
Acceleration="mex".

% Load resnet50 and convert to a dlnetwork
lgraph = layerGraph(resnet50);
lgraph = removeLayers(lgraph,"ClassificationLayer_fc1000");
dlnet = dlnetwork(lgraph);

% Create an example image and convert to a formatted dlarray
img = im2single(imread("peppers.png"));
img = imresize(img, [224 224]);
img = gpuArray(img);
X = dlarray(img,"SSCB");

% Time with auto acceleration
tAuto = gputimeit(@()predict(dlnet,X))

tAuto = 0.0273     

% Time with mex acceleration
tMex = gputimeit(@()predict(dlnet,X,Acceleration="mex"))

tMex = 0.0082
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speedup = tAuto/tMex

speedup = 3.3507

The code was timed on a Windows® 10, Intel® Xeon® E5-1650 v4 @ 3.60 GHz test system with
NVIDIA® Titan RTX GPU.

Custom Training Loops: Compute gradients of loss functions involving
complex numbers
Use dlfeval and dlgradient to compute gradients of loss functions involving complex numbers.

Previously, complex functions and gradients were not supported. Now, you can use custom training
loops with loss functions that involve complex numbers and gradients. The resulting gradient can be
complex. However, the value to differentiate—for example, the loss—must be real, even if the function
is complex.

By default, computing complex gradients is enabled. If you want to restrict the inputs and gradients
and variables in the function to real numbers, set the name-value option AllowComplex to 0 (false).
For more information, see dlgradient.

Custom Training Loops: Specify network outputs
Specify the network outputs of a dlnetwork object using the OutputNames property. The predict
and forward functions for dlnetwork objects, by default, use the outputs specified by
OutputNames.

Custom Training Loops: Use flatten layer in dlnetwork objects
dlnetwork objects now support layer graphs containing flattenLayer objects.

Custom Training Loops: Improved instructions for running custom
training loops on GPU and in parallel
Follow improved instructions to speed up custom training loops by running on a GPU, in parallel
using multiple GPUs, or on a cluster. For more information, see “Run Custom Training Loops on a
GPU and in Parallel”

TensorFlow Operator Support: Import networks that include Square
operators
You can now import a TensorFlow network that includes Square operators by using the
importTensorFlowNetwork and importTensorFlowLayers functions. For a list of the
TensorFlow operators that the functions support for conversion into MATLAB functions with dlarray
support, see “Supported TensorFlow Operators”.

TensorFlow-Keras Layer Support: Import 1-D convolution and pooling
layers
importTensorFlowNetwork, importTensorFlowLayers, importKerasNetwork, and
importKerasLayers can now import networks with TensorFlow-Keras 1-D convolution and pooling
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layers. The functions support the conversion of these layers into the convolution1dLayer,
maxPooling1dLayer, averagePooling1dLayer, globalMaxPooling1dLayer, and
globalAveragePooling1dLayer built-in Deep Learning Toolbox layers. For a full list of supported
layers, see “TensorFlow-Keras Layers Supported for Conversion into Built-In MATLAB Layers”.

ONNX Import Support: Automatic custom layer generation
The functions importONNXNetwork and importONNXLayers now try to generate a custom layer
when the software cannot convert an ONNX™ operator into an equivalent built-in MATLAB layer.
Specify GenerateCustomLayers as false to opt out of the automatic custom layer generation. By
default, GenerateCustomLayers is set to true.

The functions save the generated custom layers in a package in the current folder. By default, the
software saves the custom layers in a package named +modelfile, where modelfile is the file
containing the ONNX model. Use PackageName to specify the name of the custom layers package.

ONNX Import Support: Constant folding optimization
The functions importONNXNetwork and importONNXLayers can now perform constant folding,
which optimizes the imported network architecture by computing operations on ONNX initializers
(initial constant values) during the conversion of ONNX operators to equivalent built-in MATLAB
layers. If the ONNX network contains operators that the software cannot convert to equivalent built-
in MATLAB layers, constant folding optimization can reduce the number of unsupported layers. Use
the FoldConstants name-value argument to specify constant folding optimization options.

ONNX Import Support: Import ONNX network as a dlnetwork object
The importONNXNetwork function can now import an ONNX model as a dlnetwork object, when
you specify the name-value argument TargetNetwork as "dlnetwork". By default,
importONNXNetwork returns the network net as a DAGNetwork object.

The importONNXLayers function can now import an ONNX model as a LayerGraph object
compatible with a dlnetwork object, when you specify the name-value argument TargetNetwork
as "dlnetwork". By default, importONNXLayers returns a layer graph compatible with a
DAGNetwork object. For more information on how to convert the imported layer graph to a
DAGNetwork or dlnetwork object, see the output argument lgraph.

ONNX Import Support: New and modified options for network inputs
and outputs
The functions importONNXNetwork and importONNXLayers can import an ONNX network with
multiple inputs and multiple outputs (MIMO). Use the name-value arguments of the functions to
specify options for the network inputs and outputs.

• importONNXNetwork can now import networks with multiple outputs, and importONNXLayers
can now import these networks without inserting placeholder layers for the outputs. The name-
value argument OutputLayerType specifies the layer type for the first network output.

• The functions now try to derive the type of the output layers from the ONNX file. Use the name-
value argument OutputLayerType only when the functions cannot derive the output layer type.
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• Use the new name-value arguments InputDataFormats and OutputDataFormats to specify the
data format of the network inputs and outputs, respectively, when the functions cannot derive the
data formats from the ONNX file.

• Use the new name-value argument ImageInputSize to specify the size of a 2-D or 3-D input
image for the first network input.

ONNX Export Layer Support: Export networks that include 1-D
convolution and pooling layers
You can now export a trained MATLAB deep learning network that includes 1-D convolution and
pooling layers (convolution1dLayer, maxPooling1dLayer, averagePooling1dLayer,
globalMaxPooling1dLayer, and globalAveragePooling1dLayer) to the ONNX model format
by using exportONNXNetwork. For a full list of supported layers, see “Layers Supported for ONNX
Export”.

Automatic Differentiation: Use complex numbers with dlarray
You can now use complex numbers with dlarray. Functions that support dlarray objects and
complex numbers now also support complex dlarray objects.

The following complex number functions now support dlarray objects:

• angle
• complex
• conj
• imag
• real
• reallog
• realsqrt
• realpow

Additionally, the inverse trigonometric functions acos, acosh, acsc, asec, asin, and atanh and the
log, sqrt, and power functions no longer produce an error for dlarray input if the result is
complex.

Automatic Differentiation: Use more functions with dlarray input
Use the following functions with dlarray input. You can use these functions to define model
functions and custom layers.

• Fast Fourier transforms — Compute fast Fourier transforms using fft and ifft.
• Attribute validation — Check the validity of arrays using validateattributes.
• Complex numbers — Use the functions angle, complex, conj, imag, real, reallog, realsqrt,

and realpow.
• Ordinary differential equations – Compute the solution of a nonstiff ordinary differential equation

(ODE) using ode45. For neural ODE workflows, use dlode45.

For a full list of functions that support dlarray input, see “List of Functions with dlarray Support”.
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Network Training: Create layer graphs from series networks
Create a layer graph from a series network using the layerGraph function.

Network Training: Include softmax layers in regression networks
Including softmaxLayer objects in regression networks is now supported.

Network Training: Train classification networks without a softmax
layer
Including softmaxLayer objects before a classification layer is no longer required.

Deep Learning Examples: Explore deep learning workflows
New and updated examples and topics help you progress with deep learning:

• “Build Networks with Deep Network Designer”
• “Train Networks Using Deep Network Designer”
• “Train Network for Time Series Forecasting Using Deep Network Designer”
• “Choose Training Configurations for LSTM Using Bayesian Optimization”
• “Use Bayesian Optimization in Custom Training Experiments”
• “Explore Network Predictions Using Deep Learning Visualization Techniques”
• “Deep Learning Visualization Methods”

New examples for image processing and computer vision tasks include:

• “Recover Images from Extreme Low-Light Conditions Using Deep Learning”
• “Detect Image Anomalies Using Explainable One-Class Classification Neural Network”
• “Unsupervised Medical Image Denoising Using CycleGAN”
• “Unsupervised Medical Image Denoising Using UNIT”
• “Classify Tumors in Multiresolution Blocked Images”
• “Gesture Recognition using Videos and Deep Learning”

New and updated examples for lidar processing tasks include:

• “Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
• “Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
• “Lidar 3-D Object Detection Using PointPillars Deep Learning”

New examples for audio processing tasks include:

• “End-to-End Deep Speech Separation”
• “Acoustics-Based Machine Fault Recognition”
• “Acoustics-Based Machine Fault Recognition Code Generation with Intel MKL-DNN”
• “Acoustics-Based Machine Fault Recognition Code Generation on Raspberry Pi”
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• “Accelerate Audio Deep Learning Using GPU-Based Feature Extraction”

New examples for signal processing tasks include:

• “Denoise EEG Signals Using Deep Learning Regression”
• “Hand Gesture Classification Using Radar Signals and Deep Learning”
• “Learn Pre-Emphasis Filter Using Deep Learning”
• “Human Activity Recognition Using Mobile Phone Data” (Signal Processing Toolbox)

New examples for text analytics tasks include:

• “Language Translation Using Deep Learning”

New examples for deep learning quantization tasks include:

• “Quantize Object Detectors and Generate CUDA® Code”
• “Parameter Pruning and Quantization of Image Classification Network”

New examples for computational finance tasks include:

• “Compare Deep Learning Networks for Credit Default Prediction”
• “Interpret and Stress-Test Deep Learning Networks for Probability of Default”
• “Hedging an Option Using Reinforcement Learning Toolbox”

New examples of wavelet-based techniques include:

• “Parasite Classification Using Wavelet Scattering and Deep Learning”
• “Fault Detection Using Wavelet Scattering and Recurrent Deep Networks”
• “Anomaly Detection Using Autoencoder and Wavelets”

New and updated examples for using deep learning with Simulink include:

• “Classify Images in Simulink Using GoogLeNet”
• “Time Series Prediction in Simulink Using Deep Learning Network”
• “Lane and Vehicle Detection in Simulink Using Deep Learning”
• “Classify Sequence of Images in Simulink with Imported TensorFlow Network”
• “Generate Generic C/C++ for Sequence-to-Sequence Deep Learning Simulink Models” (Simulink

Coder)

DenseNet-201: Improved CPU performance for inference
The predict and classify functions show improved performance for the DenseNet-201 pretrained
network when the ExecutionEnvironment option is "cpu". For example, making predictions using
the following test is about 1.7x faster than in the previous release.

function timeDenseNet201
    miniBatchSize = 32;
    
    net = densenet201;
    X = randn(224,224,3,miniBatchSize,"single");
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    % Warm up iterations
    for k = 1:5
        predict(net,X,ExecutionEnvironment="cpu");
    end

    % Timed iterations
    tic
    for k = 1:25
        predict(net,X,ExecutionEnvironment="cpu");
    end
    toc
end

The approximate execution times are:

R2021a: 60.0 seconds

R2021b: 35.1 seconds

The code was timed on a Windows 10, Intel Xeon E5-1650 v4 @ 3.60 GHz test system by calling the
function timeDenseNet201.

Custom Training Loops: Improved performance for dlnetwork training
and inference
Using the predict function for dlnetwork objects shows improved performance for models with
blocks of convolution and ReLU layers, and models with blocks of convolution, batch normalization,
and ReLU layers.

Using the dlfeval function to evaluate model gradients using dlnetwork objects shows improved
performance for models with blocks of convolution and ReLU layers.

For example, making predictions using the following test is about 3.7x faster than in the previous
release.

function timePrediction()
    % Create resnet50 dlnetwork
    rng(0);
    net = resnet50();
    lgraph = layerGraph(net);
    lgraph = removeLayers(lgraph,"ClassificationLayer_fc1000");
    dlnet = dlnetwork(lgraph);
    
    % Prepare input data
    imageSize = [224,224,3];
    miniBatchSize = 16;
    X = single(unifrnd(0,255,[imageSize,miniBatchSize]));
    X = dlarray(X,"SSCB");
    X = gpuArray(X);
    
    % Warm up iterations
    for i = 1:20
        Y = predict(dlnet,X);
    end
    
    % Timed iteration
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    gputimeit(@() predict(dlnet,X))
end

The approximate execution times are:

R2021a: 0.07 seconds

R2021b: 0.02 seconds

The code was timed on a Windows 10, Intel Xeon E5-1650 v4 @ 3.60 GHz test system with NVIDIA
Titan RTX GPU by calling the function timePrediction.

Functionality being removed or changed
trainNetwork automatically stops training when loss is NaN
Behavior change

When you train a network using the trainNetwork function, training automatically stops when the
loss is NaN. Usually, a loss value of NaN introduces NaN values to the network learnable parameters,
which in turn can cause the network to fail to train or to make valid predictions. This change helps
you identify issues with the network before training completes.

In previous releases, the network continues to train when the loss is NaN.

nntraintool will be removed
Warns

nntraintool will be removed in a future release. To train a network and open the training progress
plot, use train instead.

ClassNames option in importONNXNetwork has been removed
Errors

ClassNames has been removed from the importONNXNetwork function. Use Classes instead. To
update your code, replace all instances of ClassNames with Classes.

ImportWeights option of importONNXLayers has been removed
Warns

ImportWeights has been removed from the importONNXLayers function. Starting in R2021b, the
ONNX model weights are automatically imported. In most cases, you do not need to make any
changes to your code.

• If ImportWeights is not set in your code, importONNXLayers now imports the weights.
• If ImportWeights is set to true in your code, the behavior of importONNXLayers remains the

same.
• If ImportWeights is set to false in your code, importONNXLayers now ignores the name-value

argument ImportWeights and imports the weights.

importONNXNetwork cannot create input and output layers from ONNX file information
Behavior change

If you import an ONNX model as a DAGNetwork object, the imported network must include input and
output layers. importONNXNetwork tries to convert the input and output ONNX tensors into built-in
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MATLAB layers. When importing some networks, which importONNXNetwork could previously
import with input and output built-in MATLAB layers, importONNXNetwork might now return an
error. In this case, do one of the following to update your code:

• Specify the name-value argument TargetNetwork as "dlnetwork" to import the network as a
dlnetwork object.

• Use the name-value arguments InputDataFormats, OutputDataFormats, and
OutputLayerType to specify the imported network's inputs and outputs.

• Use importONNXLayers to import the network as a layer graph with placeholder layers.
• Use importONNXFunction to import the network as a model function and an ONNXParameters

object.

importONNXLayers cannot create input and output layers from ONNX file information
Behavior change

If you import an ONNX model as a LayerGraph object compatible with a DAGNetwork object, the
imported layer graph must include input and output layers. importONNXLayers tries to convert the
input and output ONNX tensors into built-in MATLAB layers. When importing some networks, which
importONNXLayers could previously import with input and output built-in MATLAB layers,
importONNXLayers might now insert placeholder layers. In this case, do one of the following to
update your code:

• Specify the name-value argument TargetNetwork as "dlnetwork" to import the network as a
LayerGraph object compatible with a dlnetwork object.

• Use the name-value arguments InputDataFormats, OutputDataFormats, and
OutputLayerType to specify the imported network's inputs and outputs.

• Use importONNXFunction to import the network as a model function and an ONNXParameters
object.
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Experiment Manager: Train networks using custom training
experiments
With Experiment Manager, you can now create built-in and custom training experiments. Built-in
training experiments use the trainNetwork function. Custom training experiments support
workflows that require another training function. These workflows include:

• Using a custom training loop on a dlnetwork, such as a Siamese network or a generative
adversarial network (GAN).

• Training a network using a model function or a custom learning rate schedule.
• Updating the learnable parameters of a network by using a custom function.

When you create an experiment, you can select Built-In Training (trainNetwork) or Custom
Training to add a blank experiment to your project. For more information, see Configure Custom
Training Experiment. For examples that use custom training experiments, see Run a Custom Training
Experiment for Image Comparison and Use Experiment Manager to Train Generative Adversarial
Networks (GANs).

Experiment Manager: Quickly set up your experiment by loading
preconfigured templates
Set up your experiment quickly by selecting a preconfigured template in Experiment Manager.
When you create an experiment, you can use one of several templates as a guide for defining your
experiment. In R2021a, the experiment templates support workflows that include image
classification, image regression, sequence classification, semantic segmentation, and custom training
loops. You can also try a getting started tutorial or access further examples by opening a new project.

Experiment Manager: Annotate your experiment results
With Experiment Manager, you can now add annotations to record observations about the results of
your experiment. To add an annotation, right-click a cell in the results table and select Add
Annotation. Alternatively, select a cell in the results table and, on the Experiment Manager toolstrip,
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select Annotations > Add Annotation. To open the Annotations pane and view all of your
annotations, on the Experiment Manager toolstrip, select Annotations > View Annotations. For
more information, see Sort, Filter, and Annotate Experiment Results.

Simulink Blocks: Simulate and generate code for deep learning
recurrent neural networks
In R2021a, you can simulate and generate code for trained recurrent neural networks in Simulink.

The Deep Neural Networks block library includes the:

• Stateful Predict block — To predict responses for the data at the input by using the trained
recurrent neural network specified through the block parameter.

• Stateful Classify block — To predict class labels for the data at the input by using the trained
recurrent neural network specified through the block parameter.

The Stateful Predict and Stateful Classify blocks allow you to load a pretrained network into the
Simulink model from a MAT-file or from a MATLAB function. The blocks update the state of the
network with every prediction.

Adversarial Examples: Investigate network robustness using
adversarial examples
Neural networks can be susceptible to a phenomenon known as adversarial examples, where very
small changes to an input can cause the input to be misclassified. These changes are often
imperceptible to humans.

You can investigate network robustness to adversarial examples by generating untargeted and
targeted adversarial examples. For an example showing how to use the fast gradient sign method
(FGSM) and the basic iterative method (BIM) to generate adversarial examples for an image
classification network, see Generate Untargeted and Targeted Adversarial Examples for Image
Classification.

You can train a network to be robust to adversarial examples using adversarial training. For an
example showing how to use FGSM adversarial training to make an image classification network
robust to adversarial images, see Train Image Classification Network Robust to Adversarial
Examples. For an example showing how to use Jacobian regularization to make an image
classification network robust to adversarial images, see Train Robust Deep Learning Network with
Jacobian Regularization.

Visualization: Explain network predictions using Grad-CAM
Use the gradient-weighted class activation mapping (Grad-CAM) technique to help explain network
prediction results. You can use the gradCAM function to map which parts of your input image data
strongly affect network predictions.

Grad-CAM utilizes the gradient of a differentiable output with respect to convolutional features, to
identify the parts of an input image that most impact the network predictions. Use gradCAM to
understand network behavior for 2-D and 3-D image data tasks, such as classification, regression, and
semantic segmentation.
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For examples showing how to use Grad-CAM to explain network predictions, see Grad-CAM Reveals
the Why Behind Deep Learning Decisions and Explore Semantic Segmentation Network Using Grad-
CAM.

Visualization: Use custom segmentation map with LIME
The 'Segmentation' name-value argument of imageLIME now accepts a two-dimensional
segmentation matrix the same size as the input image. Custom segmentation maps are useful for
using LIME on tasks involving non-natural images, such as spectrogram or floor plan data.

For an example showing how to explain spectrogram classifications using imageLIME with a custom
segmentation map, see Investigate Spectrogram Classifications Using LIME.

Weighted Classification: Train network with imbalanced data using
weighted classification
When training a neural network with imbalanced data, you can specify the class weights for weighted
cross entropy loss using the 'ClassWeights' option of the classificationLayer function.

Batch Normalization: Train network using moving batch normalization
statistics
To make predictions with the network after training, batch normalization requires a fixed mean and
variance to normalize the data. This fixed mean and variance can be calculated from the training data
after training, or approximated during training using running statistic computations.

If the 'BatchNormalizationStatistics' training option is 'moving', then the software
approximates the batch normalization statistics during training using a running estimate and, after
training, sets the TrainedMean and TrainedVariance properties to the latest values of the moving
estimates of the mean and variance, respectively.

If the 'BatchNormalizationStatistics' training option is 'population', then after network
training finishes, the software passes through the data once more and sets the TrainedMean and
TrainedVariance properties to mean and variance computed from the entire training data set,
respectively.

The layer uses the TrainedMean and TrainedVariance to normalize the input during prediction.

Layer Normalization: Train network using layer normalization
Train a network using layer normalization layers. When using layer graph and dlnetwork objects,
use the layerNormalizationLayer function. When defining a model as a function and using a
custom training loop, use the layernorm function.

For a list of available layers, see List of Deep Learning Layers.

Instance Normalization: Train network using instance normalization
Train a network using instance normalization layers. When using layer graph and dlnetwork
objects, use the instanceNormalizationLayer function. When defining a model as a function, use
the instancenorm function.
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For a list of available layers, see List of Deep Learning Layers.

Swish Layer: Train network with swish activation layers
You can now use swish layers in deep learning networks. Create a swish layer using the swishLayer
function.

For an example showing how to compare activation layers when training a deep neural network, see
Compare Activation Layers.

For a list of available layers, see List of Deep Learning Layers.

Convolution: Specify custom padding values for convolution
operations
Specify custom padding options when using the convolution2dLayer, convolution3dLayer,
groupedConvolution2dLayer, and dlconv functions using the 'PaddingValue' option.

Specify the padding value as one of the following:

• Scalar – Pad with the specified scalar value.
• 'symmetric-include-edge' – Pad using mirrored values of the input data, including the edge

values.
• 'symmetric-exclude-edge' – Pad using mirrored values of the input data, excluding the edge

values.
• 'replicate' – Pad using repeated border elements of the input data.

GPU Data: Use gpuArray data for training and inference with
DAGNetworks and SeriesNetworks
You can now provide input data as gpuArray objects for training and inference using both
convolutional and recurrent DAGNetwork and SeriesNetwork objects. Previously, training and
inference required input data to be stored on the CPU, even when executing your network on the
GPU.

This can be useful when your data is already stored on the GPU. You do not need to convert your data
to gpuArray objects to perform training or inference on the GPU.

The following functions for training and inference now support gpuArray inputs:

• activations
• classify
• classifyAndUpdateState
• predict
• predictAndUpdateState
• trainNetwork
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To use gpuArray inputs for training and inference, you must set the "ExecutionEnvironment"
name-value option to "auto" or "gpu". Using gpuArray inputs when "ExecutionEnvironment"
is set to "cpu" results in an error.

Deep Learning Networks: Check layer graphs and networks are equal
To check that LayerGraph, SeriesNetwork, DAGNetwork, and dlnetwork objects have identical
class, architecture, and properties, use the isequal function. To check for identical class,
architecture, and properties ignoring NaN values, use the isequaln function.

Deep Learning Quantization: ARM Cortex-A calibration support
The Deep Learning Toolbox Model Quantization Library support package now supports calibration of
a network for quantization and deployment on ARM® Cortex®-A microcontrollers. Use dlquantizer
to specify a CPU execution environment.

quantObj = dlquantizer(net,'ExecutionEnvironment','CPU');

Use calibrate to exercise the network and collect the dynamic ranges of the learnable parameters
in the network.

Custom Layers: Use MEX acceleration with custom layers
Accelerate prediction, classification, and feature extraction of DAGNetwork and SeriesNetwork
containing custom layers using automatically generated MEX functions. You can apply MEX
acceleration using the name-value option "Acceleration","mex" in the following functions:

• activations
• classify
• predict

For restrictions and usage notes on custom layers with MEX acceleration, see Custom Layers (GPU
Coder).

Custom Layers: Define custom layers with formatted inputs and
outputs
When defining a custom layer, defining a backward function is optional when the forward functions
dlarray objects as input. Using dlarray objects makes working with high dimensional data easier
by allowing you to label the dimensions. For example, you can label which dimensions correspond to
spatial, time, channel, and batch dimensions using the 'S', 'T', 'C', and 'B' labels, respectively.
For unspecified and other dimensions, use the 'U' label. For dlarray object functions that operate
over particular dimensions, you can specify the dimension labels by formatting the dlarray object
directly, or by using the 'DataFormat' option.

Using formatted dlarray objects in custom layers also allows you to define layers where the inputs
and outputs have different formats. For example, you can define a layer that takes as input a mini-
batch of images with format 'SSCB' (spatial, spatial, channel, batch) and output a mini-batch of
sequences with format 'CBT' (channel, batch, time).
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To enable support for using formatted dlarray objects in custom layer forward functions, also
inherit from the nnet.layer.Formattable class when defining the custom layer.

To learn how to create a layer that uses formatted dlarray objects, see Define Custom Deep
Learning Layer with Formatted Inputs. For examples of custom layers that use formatted input data,
open the example Train Conditional Generative Adversarial Network (CGAN) as a live script and
inspect the custom layers projectAndReshapeLayer and embedAndReshapeLayer.

Network Composition: Simplify creation of custom layers containing
nested layers
Previously, network composition using dlnetwork objects inside custom layers required each nested
network to contain an input layer. The input layer provides the information needed to initialize the
learnable and state parameters with initial values, ready for training. This requires keeping track of
the size and shape of the inputs passed to each custom layer containing a nested dlnetwork with an
input layer.

Now, network composition is simplified because you can defer initialization of dlnetwork objects to
a later time. This means that you can create uninitialized dlnetwork objects that do not contain
input layers.

When you create an uninitialized dlnetwork, the software does not initialize any learnable and state
parameters with initial values at the time of construction.

Creating an uninitialized dlnetwork is useful for network composition so that you do not have to
keep track of the size and shape of data as it propagates through the network. You can construct your
network using custom layers with nested networks and automatically initialize all nested networks at
once.

When the parent network is initialized, the learnable parameters of any nested dlnetwork objects
are initialized at the same time. If the parent network is trained using the trainNetwork function,
then any nested dlnetwork objects are initialized when you call trainNetwork. If the parent
network is a dlnetwork, then any nested dlnetwork objects are initialized when the parent
network is constructed or, if the parent network is uninitialized on construction, when you use the
initialize function with the parent network.

To create an uninitialized dlnetwork, set the 'Initialize' option to false when you construct
the dlnetwork. You can check if a dlnetwork is initialized using the Initialized property of the
dlnetwork object.

For more information on network composition, see Deep Learning Network Composition.

For a template showing how to create a custom layer containing an uninitialized nested dlnetwork,
see Define Nested Deep Learning Layer.

Sequence Padding: Apply custom padding to sequence data
Apply custom padding to sequence data for training using the padsequences function. The
padsequences function prepares your numeric or categorical sequence data for training by padding
or truncating sequences to the same length.
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You can pad or truncate data to the same length as the longest or shortest sequence, or to a fixed
length. You can apply padding to the left, right, or both sides of the data. You can pad with zeros, a
specified value, or apply symmetric padding using the reflected values of each sequence.

The padsequences function also provides a mask of the location of the original data, so that you can
exclude the padded values in loss computations using the "Mask" name-value option in the
crossentropy function.

To automatically pad your sequence data for use in custom training loops, you can
use padsequences in conjunction with a minibatchqueue object.

Federated Learning: Train network using decentralized data
Use federated learning to train a network without moving data to a central location, even if individual
data sources do not match the overall distribution of the data. This is known as non-independent and
identically distributed (non-IID) data. Federated learning can be especially useful when the training
data is large, or when there are privacy concerns about transferring the training data.

Instead of distributing data, the federated learning technique trains multiple models in parallel, each
in the same location as a data source. The global model learns from all the data sources via periodic
averaging of the learnable parameters of the locally trained models.

For an example showing how to train a network using federated learning, see Train Network Using
Federated Learning.

Custom Training Loops: Apply 1-D convolution and pooling operations
to sequence and time-series data
Apply 1-D convolution and pooling operations to sequence and time-series data

The dlconv function now supports convolving over the 'T' (time) dimension of the input data.

The function, by default, convolves over up to three dimensions of the input data labeled 'S'
(spatial). To convolve over dimensions labeled 'T' (time), specify the weights argument with a 'T'
dimension using a formatted dlarray object or by using the 'WeightsFormat' option.

The maxpool and avgpool functions now support pooling over the 'T' dimension of the input data.
Specify which dimensions to pool over by using the 'PoolFormat' option.

The maxunpool function also supports unpooling over the 'T' dimension.

For an example showing how to train a neural network using 1-D convolutions, see Sequence-to-
Sequence Classification Using 1-D Convolutions.

Custom Training Loops: Use Huber and CTC loss in custom training
loops
Use the following loss functions in custom training loops:

• Huber – Calculate the Huber loss using the huber function.
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• Connectionist temporal classification (CTC) – Calculate the connectionist temporal classification
loss using the ctc function.

Custom Training Loops: Specify weights, masks, and reduction options
for custom training loop loss function
Specify weights, mask, and reduction options for the crossentropy and huber functions using the
weights, Mask, and Reduction arguments, respectively.

Custom Training Loops: Train using higher-order derivatives
When training using a custom training loop, enable the calculation of higher-order derivatives using
the dlgradient function using the 'EnableHigherDerivatives' option. This allows you to
develop models such as Wasserstein generative adversarial networks (WGANs) which require
calculating second order derivatives.

When the 'EnableHigherDerivatives' option of dlgradient is true, the function traces the
backward pass so that the returned gradients can be used in subsequent calls to dlgradient
function.

For examples showing how to train models that require calculating higher-order derivatives, see:

• Train Wasserstein GAN with Gradient Penalty (WGAN-GP)
• Solve Partial Differential Equations Using Deep Learning
• Solve Partial Differential Equation with LBFGS Method and Deep Learning (requires Optimization

Toolbox™)

Custom Training Loops: Accelerate custom deep learning functions
When using the dlfeval function in a custom training loop, the software traces each input dlarray
object of the model gradients function to determine the computation graph used for automatic
differentiation. This tracing process can take some time and can spend time recomputing the same
trace. By optimizing, caching, and reusing the traces, you can speed up gradient computation in deep
learning functions. You can also optimize, cache, and reuse traces to accelerate other deep learning
functions that do not require automatic differentiation, for example you can also accelerate model
functions and functions used for prediction.

To accelerate a deep learning function, use the dlaccelerate function. The returned
AcceleratedFunction object optimizes and caches the traces of calls to the underlying function
and reuses the cached result when the same input pattern reoccurs.

Try using dlaccelerate for function calls that:

• are long-running
• have dlarray object, structures of dlarray objects, or dlnetwork objects as inputs
• do not have side effects like writing to files or displaying output

To clear the cache of an AcceleratedFunction object, use the clearCache function.

For an example showing how to accelerate training and prediction functions, see Accelerate Custom
Training Loop Functions. For an example showing how to compare the performance of functions with
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and without acceleration, see Evaluate Performance of Accelerated Deep Learning Function. For an
example showing how to compare the outputs of accelerated functions and the underlying function,
see Check Accelerated Deep Learning Function Outputs.

To learn more, see Deep Learning Function Acceleration for Custom Training Loops.

Custom Training Loops: Automatic performance optimization for
training and inference
Accelerate training and inference when using dlnetwork objects with automatic performance
optimization. The software automatically applies a number of performance optimizations suitable for
the input network and hardware resources.

Use performance optimization when you plan to call the function multiple times using different input
data with the same size and shape.

The following functions support automatic performance optimization:

• forward
• predict

Automatic performance optimization is enabled by default. You can disable performance optimization
using the name-value option 'Acceleration','none'. To programmatically enable optimization,
use the name-value option 'Acceleration','auto'.

Custom Training Loops: Create dlnetwork objects without input layers
You can now create dlnetwork objects that do not contain input layers. Previously, input layers were
required. The software uses the information from the input layer to initialize the learnable and state
parameters with initial values, ready for training. Now, you can specify that information using
example inputs when you create the dlnetwork.

You can create an initialized dlnetwork that is ready for training by providing example inputs when
you construct the dlnetwork.

Alternatively, you can create an uninitialized dlnetwork without an input layer, and initialize it later.
An uninitialized network has unset, empty values for learnable and state parameters and is not ready
for training. You must initialize an uninitialized dlnetwork before you can use it. Create an
uninitialized network when you want to defer initialization to a later point. You can use uninitialized
dlnetwork objects to create complex networks using intermediate building blocks that you then
connect together, for example, using Deep Learning Network Composition workflows. You can
initialize an uninitialized dlnetwork using the initialize function.

Custom Training Loops: Create dlnetwork objects using Layer arrays
You can now create dlnetwork objects directly from a Layer array, Previously, you had to convert
the Layer array to an intermediate LayerGraph before you could create a dlnetwork.

When you create a dlnetwork from a Layer array, the software connects the layers in series.

R2021a
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TensorFlow Model Import: Import a TensorFlow network in the saved
model format
You can now import a pretrained TensorFlow network in the saved model format by using the
importTensorFlowNetwork or importTensorFlowLayers function. You can import networks
created with the TensorFlow-Keras sequential or functional API. importTensorFlowNetwork and
importTensorFlowLayers try to generate a custom layer when you import a custom TensorFlow
layer or when the software cannot convert a TensorFlow layer into an equivalent built-in MATLAB
layer.

TensorFlow-Keras Layer Support: Import CuDNNGRU layers, swish
activation layers, and feature input layers from TensorFlow-Keras
importKerasNetwork and importKerasLayers now support CuDNNGRU layers, swish activation
layers, and feature input layers. For a full list of supported layers, see importKerasNetwork and
importKerasLayers.

ONNX Layer Support: Import and export networks that include depth
to space layers, swish activation layers, and feature input layers
You can now import an ONNX (Open Neural Network Exchange) network that includes depth to
space layers by using importONNXNetwork and importONNXLayers. Also, you can export a trained
MATLAB deep learning network that includes depth to space layers, swish activation layers, and
feature input layers to the ONNX model format by using exportONNXNetwork. For a full list of
supported layers, see importONNXNetwork, importONNXLayers, and exportONNXNetwork.

ONNX Export Support: Export layerGraph and dlnetwork objects
You can now export dlnetwork and layerGraph objects to the ONNX model format by using the
exportONNXNetwork function.

Pretrained Models on GitHub: BERT and FinBERT transformer models
To learn how to load pretrained BERT and FinBERT transformer models into MATLAB, see the
Transformer Models for MATLAB repository. You can use BERT and FinBERT for text classification,
sentiment analysis, and other text analytics workflows.

To find the latest pretrained models and examples for deep learning, see MATLAB Deep Learning
(GitHub).

Deep Learning Examples: Explore deep learning workflows
New examples help you progress with deep learning:

• Run a Custom Training Experiment for Image Comparison
• Use Experiment Manager to Train Generative Adversarial Networks (GANs)
• Choose Training Configurations for Sequence-to-Sequence Regression
• Adapt Code Generated in Deep Network Designer for Use in Experiment Manager

 

2-11

https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/importtensorflownetwork.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/importtensorflowlayers.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/importkerasnetwork.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/importkeraslayers.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/importonnxnetwork.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/importonnxlayers.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/exportonnxnetwork.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/exportonnxnetwork.html
https://github.com/matlab-deep-learning/transformer-models
https://github.com/matlab-deep-learning
https://github.com/matlab-deep-learning
https://www.mathworks.com/help/releases/R2021a/deeplearning/ug/exp-mgr-siamese-network-image-comparison-example.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ug/exp-mgr-gan-image-generation-example.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ug/exp-mgr-sequence-regression-example.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ug/adapt-deep-network-designer-code-for-experiment-manager.html


• Investigate Spectrogram Classifications Using LIME
• Interpret Deep Network Predictions on Tabular Data Using LIME
• Explore Semantic Segmentation Network Using Grad-CAM
• Generate Untargeted and Targeted Adversarial Examples for Image Classification
• Train Image Classification Network Robust to Adversarial Examples
• Train Wasserstein GAN with Gradient Penalty (WGAN-GP)
• Solve Partial Differential Equations Using Deep Learning
• Solve Partial Differential Equation with LBFGS Method and Deep Learning
• Train Neural ODE Network
• Node Classification Using Graph Convolutional Network
• Classify Videos Using Deep Learning with Custom Training Loop
• Train Robust Deep Learning Network with Jacobian Regularization
• Compare Activation Layers
• Define Custom Deep Learning Layer with Formatted Inputs
• Accelerate Custom Training Loop Functions
• Evaluate Performance of Accelerated Deep Learning Function
• Check Accelerated Deep Learning Function Outputs
• Train Network Using Federated Learning

New examples to help you get started with deep learning in Simulink:

• Predict and Update Network State in Simulink
• Classify and Update Network State in Simulink

New examples for computer vision tasks include:

• Instance Segmentation Using Mask R-CNN Deep Learning

New examples for image processing tasks include:

• Unsupervised Day-To-Dusk Image Translation Using UNIT
• Quantify Image Quality Using Neural Image Assessment

New examples for lidar processing tasks include:

• Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning (Lidar Toolbox)
• Data Augmentations for Lidar Object Detection Using Deep Learning (Lidar Toolbox)
• Code Generation For Lidar Object Detection Using PointPillars Deep Learning (Lidar Toolbox)
• Automate Ground Truth Labeling For Vehicle Detection Using PointPillars (Lidar Toolbox)
• The PointPillars and SqueezeSegV2 networks pre-trained on the PandaSet multiclass dataset are

now available. For more information, see Lidar Point Cloud Semantic Segmentation Using
SqueezeSegV2 Deep Learning Network and Lidar 3-D Object Detection Using PointPillars Deep
Learning.

New examples for audio processing tasks include:
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• Speaker Recognition Using x-vectors (Audio Toolbox)
• Speaker Diarization Using x-vectors (Audio Toolbox)
• Train Spoken Digit Recognition Network Using Out-of-Memory Features (Audio Toolbox)
• Train Spoken Digit Recognition Network Using Out-of-Memory Audio Data (Audio Toolbox)
• Speaker Identification Using Custom SincNet Layer and Deep Learning (Audio Toolbox)
• Dereverberate Speech Using Deep Learning Networks (Audio Toolbox)
• Speech Command Recognition in Simulink (Audio Toolbox)
• Keyword Spotting in Noise Code Generation with Intel MKL-DNN (Audio Toolbox)
• Keyword Spotting in Noise Code Generation on Raspberry Pi (Audio Toolbox)

New examples and topics for reinforcement learning tasks include:

• Reinforcement Learning Using Deep Neural Networks
• Train PPO Agent for Automatic Parking Valet
• Train Humanoid Walker

New examples for deep learning quantization tasks include:

• Quantize Residual Network Trained for Image Classification and Generate CUDA Code

predict Function: Improved performance for dlnetwork inference
The predict function for dlnetwork input shows improved performance for models that do not
have custom layers. For example, making predictions using the following test is about 2.7x faster
than in the previous release:
function timePrediction
    load("digitsCustom.mat","dlnet");
    X = dlarray(randn(28,28,1,64),'SSCB');

    % Warm up iterations
    for k = 1:5
        predict(dlnet,X);
    end

    % Timed iterations
    tic
    for k = 1:100
        predict(dlnet,X);
    end
    toc

end

The approximate execution times are:

R2020b: 1.97 seconds

R2021a: 0.72 seconds

The code was timed on a Windows 10, Intel Xeon E5-1650 v4 @ 3.60 GHz test system by calling the
function timePredictions.
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EfficientNet-B0 Pretrained Network: Improved CPU performance for
inference
The predict and classify functions show improved performance for the EfficientNet-B0
pretrained network when the 'ExecutionEnvironment' option is 'cpu'. For example, making
predictions using the following test is about 1.7x faster than in the previous release.
function timeEfficientNetB0
    miniBatchSize = 32;

    net = efficientnetb0;
    X = randn(224,224,3,miniBatchSize,'single');
    
    % Warm up iterations
    for k = 1:5
        predict(net,X,'ExecutionEnvironment','cpu');
    end

    % Timed iterations
    tic  
    for k = 1:100
        predict(net,X,'ExecutionEnvironment','cpu');
    end
    toc
end

The approximate execution times are:

R2020b: 73.4 seconds

R2021a: 42.0 seconds

The code was timed on a Windows 10, Intel Xeon E5-1650 v4 @ 3.60 GHz test system by calling the
function timeEfficientNetB0.

Functionality being removed or changed
dlnetwork state values are dlarray objects
Behavior change

The State of a dlnetwork object is a table containing the state parameter names and values for
each layer in the network.

Starting in R2021a, the state values are dlarray objects. This change enables better support when
using AcceleratedFunction objects. To accelerate deep learning functions that have frequently
changing input values, for example, an input containing the network state, the frequently changing
values must be specified as dlarray objects.

In previous versions, the state values are numeric arrays.

In most cases, you will not need to update your code. If you have code that requires the state values
to be numeric arrays, then to reproduce the previous behavior, extract the data from the state values
manually using the extractdata function with the dlupdate function.

state = dlupdate(@extractdata,dlnet.State);

forward and predict returns state values as dlarray objects
Behavior change

For dlnetwork objects, the state output argument returned by the forward and predict
functions is a table containing the state parameter names and values for each layer in the network.
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Starting in R2021a, the state values are dlarray objects. This change enables better support when
using AcceleratedFunction objects. To accelerate deep learning functions that have frequently
changing input values, for example, an input containing the network state, the frequently changing
values must be specified as dlarray objects.

In previous versions, the state values are numeric arrays.

In most cases, you will not need to update your code. If you have code that requires the state values
to be numeric arrays, then to reproduce the previous behavior, extract the data from the state values
manually using the extractdata function with the dlupdate function.

state = dlupdate(@extractdata,dlnet.State);

trainNetwork support for tables of MAT file paths will be removed in a future release
Warns

When specifying sequence data for the trainNetwork function, support for specifying tables of MAT
file paths will be removed in a future release.

To train networks with sequences that do not fit in memory, use a datastore. You can use any
datastore to read your data and then use the transform function to transform the datastore output
to the format the trainNetwork function requires. For example, you can read data using a
FileDatastore or TabularTextDatastore object then transform the output using the
transform function.
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Image Classification and Network Prediction Blocks: Simulate and
generate code for deep learning models in Simulink
In R2020b, you can simulate and generate code for trained deep learning networks in Simulink.

The Deep Neural Networks block library includes the:

• Predict block — To predict responses using the trained network specified through the block
parameter. This block allows loading of a pretrained network into the Simulink model from a MAT-
file or from a MATLAB function.

For more information about working with the Predict block, see Lane and Vehicle Detection in
Simulink Using Deep Learning. To learn more about generating code for Simulink models
containing the Predict block, see Code Generation for a Deep Learning Simulink Model that
Performs Lane and Vehicle Detection (GPU Coder).

• Image Classifier block — To classify data using a trained deep learning neural network specified
through the block parameter. This block allows loading of a pretrained network into the Simulink
model from a MAT-file or from a MATLAB function.

For more information about working with the Image Classifier block, see Classify ECG Signals in
Simulink Using Deep Learning. To learn more about generating code for Simulink models
containing the Image Classifier block, see Code Generation for a Deep Learning Simulink Model to
Classify ECG Signals (GPU Coder).

Experiment Manager: Train networks in parallel and using Bayesian
optimization
With Experiment Manager, you can now run multiple trials of an experiment in parallel. You can
also use Bayesian optimization to determine the best combination of hyperparameters for an
experiment.

Running the trials of an experiment in parallel allows you to try different training configurations at
the same time. You can also use MATLAB while the training is in progress. To run your experiment in
parallel, on the Experiment Manager toolstrip, click Use Parallel and then Run. Experiment
Manager starts the parallel pool and executes multiple simultaneous trials, depending on the number
of parallel workers available. Parallel execution requires Parallel Computing Toolbox™. For more
information, see Use Experiment Manager to Train Networks in Parallel.

Using Bayesian optimization provides an alternative to sweeping hyperparameters. To create an
experiment that uses Bayesian optimization, specify a range of values for each hyperparameter and
select a metric to maximize or minimize. When you click Run, Experiment Manager searches for a
combination of hyperparameters that optimizes the metric you selected. The combination used in
each trial is generated based on the results of the previous trials. You can train for a maximum length
of time or a maximum number of trials. Experiment Manager indicates the trial with the optimal
value for the selected metric. Bayesian optimization requires Statistics and Machine Learning
Toolbox. Additionally, if you have Parallel Computing Toolbox, you can run multiple Bayesian
optimization trials at the same time. For more information, see Tune Experiment Hyperparameters by
Using Bayesian Optimization.
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Deep Network Designer: Train networks for semantic segmentation,
multi-input, out-of-memory, and image-to-image regression workflows
Deep Network Designer now supports import and training for built-in or custom datastores. Load a
datastore object by selecting Import Data > Import Datastore from the Data tab. To learn more
about importing data into Deep Network Designer, see Import Data into Deep Network Designer.

Use datastores for semantic segmentation, multi-input, out-of-memory, and image-to-image regression
workflows. For an example showing how to train an image-to-image regression network in Deep
Network Designer, see Image-to-Image Regression in Deep Network Designer. For an example
showing how to train a simple semantic segmentation network in Deep Network Designer, see Create
Simple Semantic Segmentation Network in Deep Network Designer. These examples require
Computer Vision Toolbox.

Deep Network Designer: Explore prebuilt recurrent networks for
sequence and time series data
Explore prebuilt sequence networks using the Deep Network Designer app.

To load a prebuilt sequence network, open Deep Network Designer and select the icon for the desired
untrained sequence network. Deep Network Designer contains prebuilt networks suitable for
sequence-to-sequence and sequence-to-label classification.

For an example showing how to build a sequence network in Deep Network Designer, see Create
Simple Sequence Classification Network Using Deep Network Designer.

Deep Network Designer: Visualize data on import
Deep Network Designer now provides a preview of the data imported, allowing you to perform simple
checks before training, including:

• For image datastores, visualize the images by class.
• For pixel label image datastores, visualize the images and the pixel labels.
• For combined datastores, visualize the observations in the underlying datastores.
• For other datastores, display the size of the observations.
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Example Image Data Visualization Example Datastore Visualization

For more information about visualizing data in Deep Network Designer, see Import Data into Deep
Network Designer.

Deep Network Designer: Load multiple networks and custom layers
Deep Network Designer now supports importing multiple networks, layer arrays, and layer graphs
from the workspace into a session.

This allows you to add custom layers to a network and combine layers from multiple networks. For
example, you can create a semantic segmentation network by combining a pretrained network with a
decoder subnetwork.

For an example showing how to create a weighted classification network by importing a custom layer
into Deep Network Designer, see Import Custom Layer into Deep Network Designer.

Deep Network Designer: Randomize splitting of training and
validation data
Randomize the splitting of imported data into training and validation sets by selecting the
Randomize check box in Deep Network Designer.

Use randomization to prevent overfitting when training a network on data stored in a nonrandom
order. For more information, see Split Validation Data from Training Data.
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For an example showing how to randomize the splitting of training and validation data in Deep
Network Designer, see Create Simple Image Classification Network Using Deep Network Designer.

Deep Network Designer: Programmatically open a network in Deep
Network Designer
You can now open Deep Network Designer with a network input argument. For example, to open
SqueezeNet in Deep Network Designer, use the command deepNetworkDesigner(squeezenet).
For more information, see Deep Network Designer.

Deep Network Designer: Edit more properties of convolution layers
In Deep Network Designer, you can now edit more layer properties without losing the weights and
biases information. You can now edit the Stride, Padding, and DilationFactor properties of
convolution and grouped convolution layers, and the Stride and Cropping properties of transposed
convolution layers without losing the weights and biases information.

Editing these properties can be useful for creating a semantic segmentation network using a
pretrained network as a basis, and then editing the padding, stride, dilation, or cropping properties to
reach the desired alignment.

Feature Input: Train networks with feature input
Train networks with data sets of numeric scalars representing features (for example, tabular data
with rows corresponding to observations and columns containing numeric features) using a
featureInputLayer object. A feature input layer inputs feature data into a network and applies
data normalization.

For an example showing how to train a deep learning model that classifies thyroid conditions given
data set of numeric features, see Train Network with Numeric Features.

To train a network with both image and feature data, you must create a dlnetwork and use a custom
training loop. For an example showing how to classify digits given the images and corresponding
angles of rotation, see Train Network on Image and Feature Data.

Multiplication Layer: Add multiplication layer to networks
You can now use multiplication layers in deep learning networks. Create a multiplication layer using
multiplicationLayer.

For a list of available layers, see List of Deep Learning Layers.

Sigmoid Layer: Train networks using sigmoid activation
You can now use sigmoid layers in deep learning networks. Create a sigmoid layer using
sigmoidLayer.

For a list of available layers, see List of Deep Learning Layers.
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Group Normalization: Train networks using group normalization
A group normalization layer divides channels of data into groups and normalizes the data within each
group. You can use group normalization as an alternative to batch normalization

To include a group normalization layer in a layer graph or layer array, use the
groupNormalizationLayer function. To apply the group normalization operation in a model
function used in a custom training loop, use the groupnorm function.

Batch Normalization: Use batch normalization layers for sequence
data
Networks with sequence input now support batch normalization layers. To create a batch
normalization layer, use the batchNormalizationLayer function.

Visualization: Explain image classification predictions using LIME
Use the local interpretable model-agnostic explanation (LIME) technique to help explain image
classification results. You can use the imageLIME function to map which parts of your input data
strongly affect classification decisions.

The LIME algorithm divides the input image into features and then generates a large number of
sample images with features removed at random. These sample images are used to fit a simple model
— such as a decision tree — that approximates the behavior of the network. The model is used to map
the importance of each feature, highlighting the areas that are significant to the classification score.

For an example of how to use LIME to explain classification results, see Understand Network
Predictions Using LIME.

Pretrained Networks: Perform transfer learning with EfficientNet-b0
pretrained convolutional neural network
You can now install an add-on for the EfficientNet-b0 pretrained convolutional neural network. To
download and install the pretrained network, use the Add-On Explorer. You can also download the
network from MathWorks Deep Learning Toolbox Team. After you install the add-on, use
the efficientnetb0 function to load the network.

To retrain a network on a new classification task, follow the steps in Train Deep Learning Network to
Classify New Images and load EfficientNet-b0 instead of GoogLeNet.

For more information on pretrained neural networks in MATLAB, see Pretrained Deep Neural
Networks.

Multi-input Networks: Make predictions using multiple numeric arrays
For networks with multiple inputs, you can pass numeric arrays directly to the predict, classify,
and activations functions.
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Multi-input Networks: Monitor network training progress using
validation data
For networks with multiple inputs, monitor network training progress using validation data. Specify
validation data using the 'ValidationData' option of the trainingOptions function.

Multi-input Networks: Train networks with multiple inputs using a
parallel pool
The trainNetwork function now supports training networks with multiple inputs using multiple
workers. To train networks using a parallel pool, set the 'ExecutionEnvironment' option of the
trainingOptions function to 'parallel'.

Gated Recurrent Units: Apply recurrent bias to GRU operation
gruLayer objects now support using an additional bias term in the state and gate calculations. To
apply the reset gate after matrix multiplication and use a recurrent bias term, set the
ResetGateMode property to 'recurrent-bias-after-multiplication'.

For more information about the reset gate calculations, see Gated Recurrent Unit Layer section in the
gruLayer reference page.

Network Composition: Define custom layers containing layer graphs
To create a custom layer that itself defines a layer graph, you can specify a dlnetwork object as a
learnable parameter. This is known as network composition. You can use network composition to:

• Create a single custom layer that represents a block of learnable layers. For example, a residual
block.

• Create networks with control flow. For example, where a section of the network can dynamically
change depending on the input data.

• Create networks with loops. For example, where sections of the network feed its output back into
itself.

For more information, see Deep Learning Network Composition.

For an example showing how to create a custom layer that represents a residual block consisting of
multiple learnable layers, optional layers, and a skip connection, see Define Nested Deep Learning
Layer.

For an example showing how to train a network with nested layers, see Train Deep Learning Network
with Nested Layers.

To learn more about defining custom layers, see Define Custom Deep Learning Layers.

Custom Layers: Define custom layers for code generation
Define custom layers that support code generation workflows by specifying the %#codegen pragma.
For an example showing how to define a custom layer with learnable parameters that supports code
generation, see Define Custom Deep Learning Layer for Code Generation.
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To check that a custom layer is valid and supports code generation, use the checkLayer function
and set the 'CheckCodegenCompatibility' option to true.

For an example showing how to generate CUDA® MEX for a YOLO-v3 object detector with custom
layers, see Code Generation For Object Detection Using YOLO v3 Deep Learning.

Average Pooling: Exclude padded values from average pooling
You can now exclude padded values when calculating the average pooling of padded inputs. Typically,
padding adds zeros to the edges of the input data, which affects the average values of the edge
regions. You can now exclude the padded values from the averages of these padded regions by
padding with the mean value instead of zeros.

To exclude padded values when pooling using the average pooling layers averagePooling2dLayer
and averagePooling3dLayer, set the 'PaddingValue' property to 'mean'.

To exclude padded values when pooling using the avgpool function in a model function, set the
'PaddingValue' option to 'mean'.

Custom Training Loops: Automatically create and preprocess mini-
batches of data
Create mini-batches of data for custom training loops using a minibatchqueue object. Use mini-
batch queues to automatically convert data to dlarray or gpuArray, or apply a custom mini-batch
preprocessing function.

Work with mini-batches using the following object functions

• next – Return the next mini-batch
• reset – Reset the minibatchqueue object to the start of the data set
• shuffle – Shuffle the mini-batch queue
• hasdata – Check if the mini-batch queue can return a mini-batch
• partition – Partition the mini-batch queue for parallel computations

minibatchqueue objects support datastore input only. For data in numeric arrays, first convert the
data to a datastore using an ArrayDatastore object.

One-Hot Encoding: Encode and decode categorical data into vectors
Transform categorical data into one-hot vectors suitable for training networks with categorical input
using custom training loops. One-hot encoding expands categorical data into vectors with the same
number of elements as the total number of categories. The vectors contain a 1 in the position
corresponding to the appropriate category, and 0 otherwise. To create one-hot encoded vectors, use
the onehotencode function. When training networks with feature input, use the onehotencode
function to transform categorical data into numeric one-hot encoded vectors.

One-hot decoding takes one-hot encoded vectors and determines the encoded category. To decode
one-hot encoded vectors, use the onehotdecode function. You can also use the onehotdecode
function to determine the top class given a vector of scores, such as the output from a trained
dlnetwork.
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To automatically process your data and class labels for use in custom training loops, you can use
onehotencode in conjunction with a minibatchqueue object.

Custom Training Loops: Analyze networks for custom training loop
workflows
The analyzeNetwork function now supports analyzing layer graphs and dlnetwork objects for
custom training loop workflows.

Use the analyzeNetwork function to visualize and understand the architecture or a network, check
that you have defined the architecture correctly, and detect problems before training. Problems that
analyzeNetwork detects include missing or unconnected layers, incorrectly sized layer inputs, an
incorrect number of layer inputs, and invalid graph structures.

To analyze a layer graph for custom training loop workflows set the 'TargetUsage' option to
'dlnetwork'.

Custom Training Loops: Use bidirectional LSTM and word embedding
layers in dlnetwork objects
dlnetwork objects now support layer graphs containing bilstmLayer and wordEmbeddingLayer
objects.

Use BiLSTM layers to learn bidirectional long-term dependencies in sequence data.

Use word embedding layers to convert text data to sequences of numeric vectors. For an example
showing how to use a word embedding layer in a custom training loop, see Classify Text Data Using
Custom Training Loop.

For a list of layers that dlnetwork objects support, see the Supported Layers section of the
dlnetwork reference page.

Embeddings: Convert categorical and discrete data to numeric vectors
Embeddings map elements in a discrete vocabulary to numeric vectors. These embeddings can
capture semantic details of discrete data so that similar elements map to similar vectors.

To convert categorical and discrete data to numeric for custom training loop and custom layer
workflows, use the embed function.

For an example showing how to embed text data to train a model for sequence-to-sequence
translation, see Sequence-to-Sequence Translation Using Attention.

Automatic Differentiation: Use more functions with dlarray input
Use the following functions with dlarray input. You can use these functions to define model
functions and custom layers.

• Group normalization – Apply cross channel normalization using the groupnorm function.
• Interpolation – Interpolate function values between sample points using the interp1 function.
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• Inverse trigonometric functions – Apply inverse trigonometric functions acos, acosh, acot,
acsc, asec, asin, asinh, atan, atan2 and atanh to data in model functions and custom layers.

• Query data values – Use the functions isfinite, isinf, and isnan to check the value of
dlarray data.

• Batch matrix multiplication – Perform matrix multiplication in batches using the pagemtimes
function.

• Average pooling – Exclude padded values when pooling using avgpool by setting the
'PaddingValue' option to 'mean'.

For a list of functions that support automatic differentiation, see List of Functions with dlarray
Support. To learn more about defining and training deep learning models using automatic
differentiation, see Define Custom Training Loops, Loss Functions, and Networks.

Query Data Types: Query class and underlying data type
Check if data is stored as a dlarray or a gpuArray using the following functions.

• isdlarray
• isgpuarray (Parallel Computing Toolbox)

Use these functions to query your data class and avoid executing code that expects dlarray or
gpuArray inputs.

You can also use the following functions to query the underlying data type of data stored in
gpuArray or dlarray objects, or distributed arrays.

• underlyingType
• isUnderlyingType
• mustBeUnderlyingType

The class function is useful to determine the class of a variable. However, some classes in MATLAB
can contain underlying data that has a different type compared to what class returns. Example
classes include gpuArray, dlarray, and distributed arrays. The underlyingType,
isUnderlyingType, and mustBeUnderlyingType functions now provide a simple way to query the
underlying data types of those classes.

For most classes, class(X) and underlyingType(X) return the same answer. However, for classes
that can contain underlying data of a different type, class(X) returns the name of the class (such as
gpuArray), and underlyingType(X) returns the type of the underlying data (such as double).

Custom Training Loops: Learn More About Custom Training Loop
Workflows
To learn more about defining model gradients functions for custom training loops, see Define Model
Gradients Function for Custom Training Loop.

To learn more about initializing learnable parameters for custom training loops, see Initialize
Learnable Parameters for Model Functions.
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To learn more about how to train deep learning networks, see Training Deep Learning Models in
MATLAB.

TensorFlow-Keras Support: Import sigmoid layers, multiplication
layers, 2-D upsampling layers, and 3-D upsampling layers from
TensorFlow-Keras
importKerasNetwork and importKerasLayers now support sigmoid layers, multiplication layers,
2-D upsampling layers, and 3-D upsampling layers. For a full list of supported layers, see
importKerasNetwork and importKerasLayers.

ONNX Support: Import and export networks that include sigmoid
layers, multiplication layers, 2-D resize layers, 3-D resize layers, space
to depth layers, and instance normalization layers
You can now import an ONNX (Open Neural Network Exchange) network that includes sigmoid
layers, multiplication layers, 2-D resize layers, 3-D resize layers, space to depth layers, and instance
normalization layers by using importONNXNetwork and importONNXLayers. Also, you can export a
trained MATLAB deep learning network that includes these layers to the ONNX model format by
using exportONNXNetwork. For a full list of supported layers, see importONNXNetwork,
importONNXLayers, and exportONNXNetwork.

ONNX Support: Import an ONNX network by using
importONNXFunction
Use importONNXFunction to import an ONNX (Open Neural Network Exchange) network as a
function. For example, use importONNXFunction to import YOLOv3. importONNXFunction
returns an ONNXParameters object that contains the network parameters, and creates a model
function that contains the network architecture. Use ONNXParameters and the model function to
perform common deep learning tasks, such as image and sequence data classification, transfer
learning, object detection, and image segmentation. importONNXFunction is also useful if you want
to define a custom training loop.

Deep Learning Examples: Explore deep learning workflows
New examples to help you get started with deep learning in Simulink:

• Lane and Vehicle Detection in Simulink Using Deep Learning
• Classify ECG Signals in Simulink Using Deep Learning

New examples and topics to help you get started with deep learning:

• Create Simple Image Classification Network Using Deep Network Designer
• Create and Explore Datastore for Image Classification
• Import Data into Deep Network Designer
• Image-to-Image Regression in Deep Network Designer
• Create Simple Semantic Segmentation Network in Deep Network Designer
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• Import Custom Layer into Deep Network Designer
• Transfer Learning Using Pretrained Network

New examples and topics help you progress with deep learning:

• Use Experiment Manager to Train Networks in Parallel
• Tune Experiment Hyperparameters by Using Bayesian Optimization
• Train Network with Numeric Features
• Train Network on Image and Feature Data
• Understand Network Predictions Using LIME
• Define Model Gradients Function for Custom Training Loop
• Train Fast Style Transfer Network
• Define Nested Deep Learning Layer
• Train Deep Learning Network with Nested Layers
• Define Custom Deep Learning Layer for Code Generation

New examples for text analytics tasks include:

• Classify Text Data Using Custom Training Loop
• Define Text Decoder Model Function
• Define Text Encoder Model Function
• Generate Text Using Autoencoders

New examples for computer vision tasks include:

• Generate Image from Segmentation Map Using Deep Learning
• Estimate Body Pose Using Deep Learning
• Activity Recognition from Video and Optical Flow Data Using Deep Learning
• Code Generation For Object Detection Using YOLO v3 Deep Learning

New examples for image processing tasks include:

• Develop Raw Camera Processing Pipeline Using Deep Learning

New examples for automated driving tasks include:

• Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data

New examples for lidar processing tasks include:

• Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network
• Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network
• Lidar 3-D Object Detection Using PointPillars Deep Learning
• Code Generation for Lidar Point Cloud Segmentation Network

New examples for audio processing tasks include:

• Speech Command Recognition Code Generation with Intel MKL-DNN
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• Speech Command Recognition Code Generation on Raspberry Pi

New examples of wavelet-based techniques include:

• Crack Identification From Accelerometer Data
• Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning
• Deploy Signal Classifier Using Wavelets and Deep Learning on Raspberry Pi

trainNetwork Function: Improved training performance using multiple
GPUs on Windows
The trainNetwork function shows improved performance on Windows for network training when
the 'ExecutionEnvironment' option is 'multi-gpu'. For example, training a network using two
GPUs in the following test is about 1.3x faster than in the previous release.
% Set up network for transfer learning
net = resnet50;
inputSize = net.Layers(1).InputSize;

numObs = 2000;

data = rand([inputSize numObs]);
labels = categorical(randi(5,[numObs 1]));

lgraph = layerGraph(net);
lgraph = replaceLayer(lgraph,'ClassificationLayer_fc1000',classificationLayer('Name','newClass'));
lgraph = replaceLayer(lgraph,'fc1000',fullyConnectedLayer(5,'Name','newFC'));

% Measure timings for 1, 2, and 4 GPUs
numGPUs = [1 2 4]; 
timings = zeros(numel(numGPUs),1);

for ii = 1:numel(numGPUs)
    
    % Set execution evironment open parallel pool
    if numGPUs(ii) == 1
        execEnv = 'gpu';
    else
        parpool(numGPUs(ii));
        execEnv = 'multi-gpu';
    end
    
    % Set appropriate mini-batch size for number of GPUs
    miniBatchSize = 64*numGPUs(ii);
    % Set training options
    options = trainingOptions('sgdm', ...
        'MiniBatchSize',miniBatchSize, ...
        'MaxEpochs',10, ...
        'ExecutionEnvironment', execEnv);
    
    % Time network training
    tic;
    trainedNet = trainNetwork(data,labels,lgraph,options);
    timings(ii) = toc;
    
    % Delete parallel pool
    delete(gcp('nocreate'))
end

The approximate execution times are:

Release 1 GPU 2 GPUs 4 GPUs
R2020a: 204 s 189 s 157 s
R2020b: 198 s 150 s 99 s

The following chart shows the execution times using one, two, and four GPUs in R2020a and R2020b.
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The code was timed on a Windows 10, Intel Xeon E5-2623 v4 @ 2.60 GHz test system with four
NVIDIA Titan V 12GB GPUs by running the above script.

predict, classify, and activations Functions: Improved CPU
performance for recurrent neural networks
The predict, classify, and activations functions show improved performance for recurrent
neural networks when the 'ExecutionEnvironment' option is 'cpu'. For example, making
predictions using the following test is about 3.4x faster than in the previous release.
function timePrediction

layers = [
    sequenceInputLayer(12)
    lstmLayer(100,'InputWeights',rand(400,12),'RecurrentWeights',rand(400,100),'Bias',rand(400,1),'OutputMode','last')
    fullyConnectedLayer(9,'Weights',rand(9,100),'Bias',rand(9,1))
    softmaxLayer
    classificationLayer('Classes',string(1:9))];
net = assembleNetwork(layers);

X = arrayfun(@(~) rand(12,100),1:128,'UniformOutput',false);

tic
for k = 1:200
    YPred = classify(net,X,'MiniBatchSize',32,'ExecutionEnvironment','cpu');
end
toc

end

The approximate execution times are:

R2020b
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R2020a: 23.1 seconds

R2020b: 6.75 seconds

The code was timed on a Windows 10, Intel Xeon E5-1650 v4 @ 3.60 GHz test system by running the
above script.

dlfeval Function: Improved GPU performance for dlnetwork training
Using the dlfeval function to evaluate model gradients using dlnetwork objects shows improved
performance for models that do not have custom layers. For example, using a GPU to process a mini-
batch of 32 images for training using a ResNet-50 network is about 1.3x faster than in the previous
release:
function timeGradients

net = resnet50;
lgraph = layerGraph(net);
lgraph = removeLayers(lgraph, lgraph.Layers(end).Name);
dlnet = dlnetwork(lgraph);
dlnet = dlupdate(@gpuArray,dlnet);

miniBatchSize = 32;
dlX = dlarray(randn(224,224,3,miniBatchSize,'single'),'SSCB');
dlX = gpuArray(dlX);
fun = @(dlnet,dlX) dlgradient(sum(forward(dlnet,dlX),'all'),dlnet.Learnables);

for i = 1:10
    grad = dlfeval(fun,dlnet,dlX);
end

wait(gpuDevice);
tic;
for i = 1:50
    grad = dlfeval(fun,dlnet,dlX);
end
wait(gpuDevice)
toc

end

The approximate execution times are:

R2020a: 16.2 seconds

R2020b: 12.9 seconds

The code was timed on a Linux®, Intel Xeon W-2133 @ 3.60 GHz test system with a NVIDIA Titan RTX
GPU by running the above script.

When processing batches of images, expect performance improvements of up to 1.4x for small
batches of fixed size.

Functionality being removed or changed
dlmtimes is not recommended
Still runs

dlmtimes is not recommended. Use pagemtimes instead. The two-input syntax of pagemtimes
performs the same functionality as dlmtimes. For information on how to use pagemtimes with
dlarray inputs, see the pagemtimes entry in List of Functions with dlarray Support

 

3-15

https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/dlarray.dlmtimes.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/pagemtimes.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ug/list-of-functions-with-dlarray-support.html




R2020a

Version: 14

New Features

Bug Fixes

Compatibility Considerations

4



Experiment Manager: Design and run experiments to train deep
learning networks
Create a deep learning experiment to train networks under various initial conditions and compare the
results by using the Experiment Manager app. For example, you can use deep learning experiments
to:

• Sweep through a range of hyperparameter values to train a deep network.
• Compare the results of using different data sets to train a network.
• Test different deep network architectures by reusing the same set of training data on several

networks.

The Experiment Manager app provides visualization tools such as training plots, confusion
matrices, filters to refine your experiment results, and the ability to define custom metrics to evaluate
your results. To improve reproducibility, every time that you run an experiment, the Experiment
Manager app stores a snapshot of your experiment definition. For example, you can use snapshots to
track the hyperparameter combinations that produce each of your results.

For more information, see these examples:

• Create a Deep Learning Experiment for Classification
• Create a Deep Learning Experiment for Regression
• Evaluate Deep Learning Experiments by Using Metric Functions
• Try Multiple Pretrained Networks for Transfer Learning
• Experiment with Weight Initializers for Transfer Learning

Deep Network Designer: Train networks and generate MATLAB code
Train image classification networks using the Deep Network Designer app.

The Deep Network Designer app now supports importing training and validation data, visualizing
data distribution, augmenting images, specifying training options, training networks with progress
plots, and exporting trained networks.

For an example showing how to train an image classification network using Deep Network Designer,
see Get Started with Deep Network Designer.

You can also generate code MATLAB from the Deep Network Designer app. The generated code
contains information on the network architecture, training and validation data import, image
augmentation, and training options.

For more information, see Generate MATLAB Code from Deep Network Designer.

Deep Network Designer: Easily import pretrained networks for
transfer learning
Import pretrained networks for transfer learning using the Deep Network Designer app. To load a
pretrained network, open the Deep Network Designer app and select the icon for the desired
pretrained network.
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Each icon displays key information about the depth, size, number of parameters and input size of the
pretrained network. For an example showing how to retrain a pretrained network, see Transfer
Learning with Deep Network Designer.

Deep Network Designer: Import and export networks with multiple
inputs or multiple outputs
Use the Deep Network Designer app to import, edit, export, and generate code for networks with
multiple input or multiple output layers.

Pretrained Networks: Perform transfer learning with DarkNet-19 and
DarkNet-53 pretrained convolutional neural networks
You can now install add-ons for the DarkNet-19 and DarkNet-53 pretrained convolutional neural
networks. To download and install the pretrained networks, use the Add-On Explorer. You can also
download the networks from MathWorks Deep Learning Toolbox Team. After you install the add-ons,
use the darknet19 and darknet53 functions to load the networks, respectively.

To retrain a network on a new classification task, follow the steps in Train Deep Learning Network to
Classify New Images and load the pretrained network you want to use instead of GoogLeNet.

For more information on pretrained neural networks in MATLAB, see Pretrained Deep Neural
Networks.

Network Architectures: Load untrained versions of common network
architectures
You can now load untrained versions of the pretrained networks in Deep Learning Toolbox. To load an
untrained version of a pretrained network as a layer graph, use the corresponding pretrained
network function and set the 'Weights' option to 'none'. Loading an untrained version of
pretrained networks does not require installing a support package.

For a list of pretrained networks in deep Learning Toolbox, see Pretrained Deep Neural Networks.

Deep Learning Data Sets: Explore data sets used for deep learning
For a list of data sets used for different deep learning workflows and how to import them into
MATLAB, see Data Sets for Deep Learning.

Conditional Generative Adversarial Networks: Train GANs using data
labels and other attributes
A conditional generative adversarial network is a type of type of generative adversarial network that
also takes advantage of labels, responses, and other attributes during the training process. You can
then use the generator of conditional GANs to generate images with specified classes or attributes.

For an example showing how to train a conditional GAN using labeled data, see Train Conditional
Generative Adversarial Network (CGAN).

 

4-3

https://www.mathworks.com/help/releases/R2020a/deeplearning/ug/transfer-learning-with-deep-network-designer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ug/transfer-learning-with-deep-network-designer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/deepnetworkdesigner-app.html
https://www.mathworks.com/matlabcentral/profile/authors/8743315-mathworks-deep-learning-toolbox-team
https://www.mathworks.com/help/releases/R2020a/deeplearning/ug/train-deep-learning-network-to-classify-new-images.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ug/train-deep-learning-network-to-classify-new-images.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ug/data-sets-for-deep-learning.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ug/train-conditional-generative-adversarial-network.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ug/train-conditional-generative-adversarial-network.html


Generative Adversarial Networks: Monitor GAN training progress and
identify common failure modes
Training GANs can be a challenging task. To learn how identify common failure modes and for
suggestions on how to fix them, see Monitor GAN Training Progress and Identify Common Failure
Modes. For an example showing how to plot GAN training progress, see Train Generative Adversarial
Network (GAN).

Image Captioning: Train networks that generate textual captions for
images using attention
Train models with an encoder-decoder architecture for image captioning by using pretrained image
classification networks as encoders and recurrent neural network (RNN) that takes the extracted
features as input and generates captions as decoders. You can incorporate an attention mechanism in
the decoder that allows the model to focus on parts of the encoded input while generating the
caption.

For an example showing how to train an image captioning network, see Image Captioning Using
Attention. This example requires Text Analytics Toolbox™.

Multi-label Classification: Define and train networks for multi-label
classification
For multi-label classification tasks (where observations can be assigned to more than one
independent category), you can train the network using a custom training loop by specifying cross-
entropy loss for independent classes. This loss function is also known as binary cross-entropy loss.

To specify cross-entropy loss for independent classes, use the crossentropy function and set the
'TargetCategories' option to 'independent'.

For an example showing to how to do multi-label classification for text data, see Multilabel Text
Classification Using Deep Learning.

Gated Recurrent Units: Train networks for sequence data using gated
recurrent unit (GRU) layers
A GRU layer learns dependencies between time steps in time series and sequence data. To include a
GRU layer in a layer graph or layer array, use the gruLayer function. To apply the GRU operation in
a model function used in a custom training loop, use the gru function.

For an example showing how to train an image captioning network using gated recurrent units, see
Image Captioning Using Attention. This example requires Text Analytics Toolbox.

Global Max Pooling: Reduce network size and help prevent overfitting
using global max pooling layers
A global max pooling layer performs downsampling by computing the maximum of the spatial
dimensions of the input. For 2-D data, create a global max pooling layer with the
globalMaxPooling2dLayer function. For 3-D data, use the globalMaxPooling3dLayer function.
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Custom Training Loops: Specify networks with 3-D layers and
networks with multiple inputs or outputs
The dlnetwork function now supports layer graphs with multiple input or multiple outputs, and
layer graphs with the following 3-D layers:

• convolution3dLayer
• transposedConv3dLayer
• crop3dLayer
• averagePooling3dLayer
• globalAveragePooling3dLayer
• maxPooling3dLayer
• globalMaxPooling3dLayer

To evaluate a dlnetwork object that has multiple inputs or multiple outputs during training or
inference, use the forward and predict functions, respectively. For an example showing how to
train a conditional GAN using multi-input networks, see Train Conditional Generative Adversarial
Network (CGAN).

To learn more about custom training loops, see Define Custom Training Loops, Loss Functions, and
Networks.

Custom Training Loops: Specify custom layers with custom backward
functions
The dlnetwork function now supports layer graphs with custom layers with custom backward
functions. Specifying a backward function is optional. Use custom backward functions when the
forward function does not support automatic differentiation or when you want to use a specific
algorithm for the backward pass.

For a list of layers in Deep Learning Toolbox, see List of Deep Learning Layers. For an example
showing how to define a custom backward function, see Specify Custom Layer Backward Function.
For an example showing how to define a custom backward loss function, see Specify Custom Output
Layer Backward Loss Function.

For more information about defining custom deep learning layers, see Define Custom Deep Learning
Layers.

Automatic Differentiation: New deep learning operations
Define custom model functions using the following operations:

• Gated recurrent units – Apply gated recurrent unit (GRU) operations using the gru function.
• Cross channel normalization – Apply cross channel normalization (also known as local response

normalization) using the crosschannelnorm function.
• Global average and global max pooling – Apply global average and global max pooling operations

using the avgpool and maxpool functions, respectively, by setting the pooling region size to
'global'.
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• Batch matrix multiplication – Perform matrix multiplication in batches using the dlmtimes
function.

• Rescaling – Rescale data using the rescale function.
• Ceiling and floor operations – Apply the ceil and floor functions to data in model functions.
• Floating point accuracy – For single and double precision, determine the distance to the next

largest floating point number using the eps function. Use this value to bound calculations away
from zero.

For a list of functions that support automatic differentiation, see List of Functions with dlarray
Support. To learn more about defining and training deep learning models using automatic
differentiation, see Define Custom Training Loops, Loss Functions, and Networks.

Training Options: Edit training option properties
You can now edit training option properties of TrainingOptionsSGDM, TrainingOptionsADAM,
and TrainingOptionsRMSProp objects directly.

For example, to change the mini-batch size after using the trainingOptions function, you can edit
the MiniBatchSize property directly:

options = trainingOptions('sgdm');
options.MiniBatchSize = 64;

Deep Learning Validation: Access final validation accuracy, loss, and
RMSE after training
Access the final validation metrics after training using the information struct output by
trainNetwork.

• For classification problems, access the validation loss and accuracy from the
FinalValidationLoss and FinalValidationAccuracy fields of the information struct,
respectively.

• For regression problems, access the validation loss and RMSE from the FinalValidationLoss
and FinalValidationRMSE fields of the information struct, respectively.

Network Plotting: Plot series networks
The plot function now supports SeriesNetwork objects.

TensorFlow-Keras Support: Import networks with multiple inputs and
multiple outputs
You can import a Keras network with multiple inputs and multiple outputs. Use
importKerasNetwork if the network includes input size information for the inputs and loss
information for the outputs. Otherwise, use importKerasLayers. The importKerasLayers
function inserts placeholder layers for the inputs and outputs. After importing, you can find and
replace the placeholder layers by using findPlaceholderLayers and replaceLayer, respectively.
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TensorFlow-Keras Support: Import GRU layers, 2-D global max pooling
layers, and PReLU advanced activation layers from TensorFlow-Keras
importKerasNetwork and importKerasLayers now support GRU layers, 2-D global max pooling
layers, and PReLU advanced activation layers. For a full list of supported layers, see
importKerasNetwork and importKerasLayers.

ONNX Support: Import and export networks with multiple inputs and
multiple outputs
You can import an ONNX network with multiple inputs and multiple outputs. If the network has
multiple inputs and a single output, use importONNXNetwork. If the network has multiple outputs,
use importONNXLayers. The importONNXLayers function inserts placeholder layers for the
outputs. After importing, you can find and replace the placeholder layers by using
findPlaceholderLayers and replaceLayer, respectively. For an example, see Import ONNX
Network with Multiple Outputs.

You can also export a trained MATLAB deep learning network that includes multiple inputs and
multiple outputs to the ONNX model format by using the exportONNXNetwork function.

ONNX Support: Import and export networks that include exponential
linear unit (ELU) layers, GRU layers, and 2-D global max pooling layers
You can now import an ONNX network that includes ELU layers, GRU layers, and 2-D global max
pooling layers by using importONNXNetwork and importONNXLayers. Also, you can export a
trained MATLAB deep learning network that includes these layers to the ONNX model format by
using exportONNXNetwork. For a full list of supported layers, see importONNXNetwork,
importONNXLayers, and exportONNXNetwork.

Pretrained Networks: Use SqueezeNet without installing support
package
The squeezenet function no longer requires installing the Deep Learning Toolbox Model for
SqueezeNet Network support package. To load a pretrained SqueezeNet network, use the
squeezenet function.

Deep Learning Examples: Explore deep learning workflows
New examples to help you get started with deep learning:

• Get Started with Deep Network Designer
• Get Started with Transfer Learning
• Interactive Transfer Learning Using SqueezeNet
• Transfer Learning with Deep Network Designer
• Create Simple Sequence Classification Network Using Deep Network Designer
• Visualize Image Classifications Using Maximal and Minimal Activating Images

New examples and topics help you progress with deep learning:
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• Train Conditional Generative Adversarial Network (CGAN)
• Update Batch Normalization Statistics in Custom Training Loop
• Update Batch Normalization Statistics Using Model Function
• Specify Custom Layer Backward Function
• Specify Custom Output Layer Backward Loss Function

New examples for experiment management tasks include:

• Create a Deep Learning Experiment for Classification
• Create a Deep Learning Experiment for Regression
• Evaluate Deep Learning Experiments by Using Metric Functions
• Try Multiple Pretrained Networks for Transfer Learning
• Experiment with Weight Initializers for Transfer Learning

New examples for text analytics tasks include:

• Image Captioning Using Attention
• Multilabel Text Classification Using Deep Learning

New examples for computer vision tasks include:

• Point Cloud Classification Using PointNet Deep Learning
• Object Detection Using YOLO v3 Deep Learning
• Object Detection Using SSD Deep Learning
• Import Pretrained ONNX YOLO v2 Object Detector
• Export YOLO v2 Object Detector to ONNX

New examples for image processing tasks include:

• Neural Style Transfer Using Deep Learning

New and updated examples for audio processing tasks include:

• Train Generative Adversarial Network (GAN) for Sound Synthesis
• Speech Emotion Recognition
• Sequential Feature Selection for Audio Features

predict Function: Improved performance for dlnetwork inference
The predict function for dlnetwork input shows improved performance for models that do not
have custom layers. For example, using a GPU to process a single image using a ResNet-50
pretrained network is about 4x faster than in the previous release:

% Create dlnetwork and warm up
net = resnet50;
lgraph = layerGraph(net);
lgraph = removeLayers(lgraph, lgraph.Layers(end).Name);
dlnet = dlnetwork(lgraph);
dlnet = dlupdate(@gpuArray,dlnet);
x = dlarray(randn(224,224,3,'single'),'SSCB');
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for i = 1:10
    predict(dlnet,x);
end

% Timing loop
wait(gpuDevice);
tic
for i = 1:100
    y = predict(dlnet,x);
end
wait(gpuDevice)
toc

The approximate execution times are:

R2019b: 10.4 s

R2020a: 2.6 s

The code was timed on a Windows 10, Intel Xeon W-2133 @ 3.60 GHz test system with a NVIDIA
GeForce RTX 2080 Ti GPU by running the above script.

When processing batches of images, expect performance improvements of up to 4x for small batches
of fixed size.

Functionality being removed or changed
rmspropupdate squared gradient decay factor default is 0.9
Behavior change

Starting in R2020a, the default value of the squared gradient decay factor in rmspropupdate is 0.9.
In previous versions, the default value was 0.999. To reproduce the previous default behavior, use
one of the following syntaxes:
[dlnet,averageSqGrad] = rmspropupdate(dlnet,grad,averageSqGrad,0.001,0.999)
[params,averageSqGrad] = rmspropupdate(params,grad,averageSqGrad,0.001,0.999)

sequenceInputLayer ignores padding values when normalizing
Behavior change

Starting in R2020a, sequenceInputLayer objects ignore padding values in the input data when
normalizing. This means that the Normalization option in the sequenceInputLayer now makes
training invariant to data operations, for example, 'zerocenter' normalization now implies that the
training results are invariant to the mean of the data.

If you train on padded sequences, then the calculated normalization factors may be different in
earlier versions and can produce different results.

maxpool indices output argument changes shape and data type
Behavior change

Starting in R2020a, the data type and shape of the indices output argument of the maxpool function
are changed. The maxpool function outputs the indices of the maximum values as a dlarray with
the same shape and format as the pooled data, instead of a numeric vector.

The indices output of maxpool remains compatible with the indices input of maxunpool. The
maxunpool function accepts the indices of the maximum values as a dlarray with the same shape
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and format as the input data. To prevent errors, use only the indices output of the maxpool function
as the indices input to the maxunpool function.

To reproduce the previous behavior and obtain the indices output as a numeric vector, use the
following code:

[dlY,indx,inputSize] = maxpool(dlY,poolsize);
indx = extractdata(indx);
indx = reshape(indx,[],1);

R2020a
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Deep Learning Customization: Define and train complex networks
(including GANs) using custom training loops, automatic
differentiation, shared weights, and custom loss functions
In R2019b, deep learning functionality is extended to support advanced networks and workflows:

• Create and train generative adversarial networks (GANs) and other networks that require shared
weights, such as Siamese networks.

• Define networks using dlnetwork, more than 14 deep learning functions, and more than 80 math
functions that support the new deep learning data type, dlarray.

• Define custom loss functions and training loops.
• Write custom layers without needing to write the backward function.

To get started with customizing deep learning workflows, see:

• Define Custom Training Loops, Loss Functions, and Networks
• Specify Training Options in Custom Training Loop
• Train Network Using Custom Training Loop
• Train Network Using Model Function
• Train Network in Parallel with Custom Training Loop
• Make Predictions Using dlnetwork Object
• Make Predictions Using Model Function

New examples of custom deep learning workflows include:

• Train Generative Adversarial Network (GAN)
• Train a Siamese Network for Dimensionality Reduction
• Train a Siamese Network to Compare Images
• Sequence-to-Sequence Classification Using 1-D Convolutions
• Sequence-to-Sequence Translation Using Attention
• Train Variational Autoencoder (VAE) to Generate Images
• Train Network Using Cyclical Learn Rate for Snapshot Ensembling
• Grad-CAM Reveals the Why Behind Deep Learning Decisions

To learn more about automatic differentiation, see:

• Automatic Differentiation Background
• Use Automatic Differentiation In Deep Learning Toolbox

New functions are available for custom deep learning workflows.

• List of Functions with dlarray Support
• Use new functions to create custom training loops.

dlnetwork Deep learning network for custom training
loop
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forward Compute deep learning network output for
training

predict Compute deep learning network output for
inference

adamupdate Update parameters using adaptive moment
estimation (Adam)

sgdmupdate Update parameters using stochastic gradient
descent with momentum (SGDM)

rmspropupdate Update parameters using root mean squared
propagation (RMSProp)

dlupdate Update parameters using custom function

• Use new functions for automatic differentiation.

dlarray Deep learning array
dlgradient Compute gradient using automatic

differentiation
dlfeval Evaluate deep learning array function using

automatic differentiation
dims Dimension labels of dlarray
finddim Find dimensions with specified label
stripdims Remove dlarray labels
extractdata Extract data from dlarray
functionToLayerGraph Convert deep learning array function to a

layer graph

• Use new functions for deep learning operations.

dlconv Deep learning convolution
dltranspconv Deep learning transposed convolution
lstm Long short-term memory
fullyconnect Sum all weighted input data and apply a bias
relu Apply rectified linear unit activation
leakyrelu Apply leaky rectified linear unit activation
batchnorm Normalize each channel of input data
avgpool Pool data to average value
maxpool Pool data to maximum value
maxunpool Unpool the output of a maximum pooling

operation
softmax Apply softmax activation to channel dimension
crossentropy Categorical cross-entropy loss
sigmoid Apply sigmoid activation
mse Half mean squared error
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Generative Adversarial Networks: Create and train generative
adversarial networks (GANs) for image generation
A generative adversarial network (GAN) is a type of deep learning network that can generate data
with similar characteristics as the input training data. A GAN consists of two networks that train
together:

1 Generator — Given a vector or random values as input, this network generates data with the
same structure as the training data.

2 Discriminator — Given batches of data containing observations from both the training data, and
generated data from the generator, this network attempts to classify the observations as "real" or
"generated."

The objective of the generator is to generate data that the discriminator classifies as "real." To
maximize the performance of the generator, maximize the loss of the discriminator when given
generated data. The objective of the discriminator is to not be "fooled" by the generator. To maximize
the performance of the discriminator, minimize the loss of the discriminator when given batches of
both real and generated data. These strategies result in a generator that generates convincingly
realistic data and a discriminator that has learned strong feature representations that are
characteristic of the training data.

To learn how to train a GAN using a custom training loop, see Train Generative Adversarial Network
(GAN).

Siamese Networks: Create and train Siamese networks for image
comparison and dimensionality reduction
Use a dlnetwork with custom loss functions and training loops to create and train Siamese
networks. A Siamese network consists of two or more identical subnetworks that have the same
architecture and share weights and parameters. Siamese networks are useful for making
comparisons. To learn more, see the following examples.

• Train a Siamese Network to Compare Images
• Train a Siamese Network for Dimensionality Reduction

Data Preprocessing: Improve training performance using different
data normalization options
Data normalization can impact training, classification, and prediction accuracy. Try setting the
Normalization option in imageInputLayer, image3dInputLayer, and sequenceInputLayer
to different values and see which is best for your data.

New normalizations include:

• 'zscore' — Normalize using z-score normalization.
• 'rescale-symmetric' — Rescale the input to be in the range [-1, 1].
• 'rescale-zero-one' — Rescale the input to be in the range [0, 1].
• function handle — Normalize the data using a custom function.

You can normalize using scalar statistics, or specify channel-wise or element-wise normalization using
the NormalizationDimension option.

R2019b

5-4

https://www.mathworks.com/help/releases/R2019b/deeplearning/examples/train-generative-adversarial-network.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/examples/train-generative-adversarial-network.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/dlnetwork.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/examples/train-a-siamese-network-to-compare-images.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/examples/train-a-siamese-network-for-dimensionality-reduction.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.imageinputlayer.html#mw_fcd2d9b1-ce25-49d1-9d06-b7cf41594ff4_sep_mw_3930f675-b00d-4ddc-8fd7-3011015230c3
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.imageinputlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.image3dinputlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.sequenceinputlayer.html


The software, by default, automatically calculates the required normalization statistics at training
time. To save time when training, specify the required statistics for normalization and set the
'ResetInputNormalization' option in trainingOptions to false.

Visualization: Map strongly activating features of input data using
occlusion
An occlusion map highlights the behavior of a network by replacing different parts of the data with an
occluding mask and measuring how the spatial location of the mask affects the activations of a
particular channel. Determine the parts of your input data that strongly affect activations and
classification scores using the occlusionSensitivity function. To learn more, see Understand
Network Predictions Using Occlusion.

Visualization: Visualize the features learned by a DAG network using
deep dream
The deepDreamImage function now supports DAG networks. Synthesize images that strongly
activate DAG network layers using the deepDreamImage function. Visualizing these images
highlights the features your trained network has learned, helping you understand network behavior.

Multi-Input, Multi-Output Networks: Create and train networks with
multiple inputs and multiple outputs
Define and train network architectures with multiple inputs (for example, networks trained on
multiple sources and types of data) or multiple outputs (for example, networks that predict both
classification and regression responses). For examples showing how to train and make predictions
with a network with multiple predictions, see:

• Train Network with Multiple Outputs
• Assemble Muliple-Output Network for Prediction
• Make Predictions Using Model Function

For more information, see Multiple-Input and Multiple-Output Networks.

Long Short-Term Memory Networks: Pad or truncate sequences on the
left
The location of the padding and truncation can impact training, classification, and prediction
accuracy. Try setting the 'SequencePaddingDirection' option in trainingOptions to 'left'
or 'right' and see which is best for your data.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode
property is 'last', any padding in the final time steps can negatively influence the layer output. To
pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to
'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM
layer), any padding in the first time steps can negatively influence the predictions for the earlier time
steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option
to 'right'.
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To learn more about the effect of padding, truncating, and splitting the input sequences, see
Sequence Padding, Truncation, and Splitting.

Long Short-Term Memory Networks: Compute intermediate layer
activations
The activations function now supports LSTM networks. Investigate and visualize the features
learned by LSTM networks from sequence and time series data by extracting the activations using
the activations function. To learn more, see Visualize Activations of LSTM Network.

ONNX Support: Export networks that combine CNN and LSTM layers
and networks that include 3-D CNN layers to ONNX format
You can now export deep networks that combine convolutional neural networks (CNNs) and long
short-term memory (LSTM) layers to ONNX format. exportONNXNetwork now also supports 3-D
CNN layers. For a full list of supported layers, see exportONNXNetwork.

Global Average Pooling: Reduce network size and help prevent
overfitting using global average pooling layers
A global average pooling layer performs downsampling by computing the mean of the spatial
dimensions of the input. For 2-D data, create a global average pooling layer with the
globalAveragePooling2dLayer function. For 3-D data, use the
globalAveragePooling3dLayer function.

Cropping: Crop 2-D and 3-D input data to size of reference feature
map
Crop 2-D and 3-D input data to the size of a reference feature map using crop2dLayer and
crop3dLayer objects, respectively.

Starting in R2019b, you can use crop2dLayer objects in Deep Learning Toolbox without Computer
Vision Toolbox. In previous versions, this object required Computer Vision Toolbox.

Deep Learning Examples: Explore deep learning workflows
New examples and topics help you progress with deep learning:

• Preprocess Data for Domain-Specific Deep Learning Applications
• Chemical Process Fault Detection Using Deep Learning
• View Network Behavior Using tsne

New examples for computer vision tasks include:

• Getting Started with Object Detection Using Deep Learning (Computer Vision Toolbox)
• Augment Bounding Boxes for Object Detection
• Augment Pixel Labels for Semantic Segmentation

New examples for image processing tasks include:

R2019b
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• Augment Images for Deep Learning Workflows Using Image Processing Toolbox
• Deep Learning Classification of Large Multiresolution Images

New examples for signal and audio processing tasks include:

• Label QRS Complexes and R Peaks of ECG Signals Using Deep Network
• Pedestrian and Bicyclist Classification Using Deep Learning
• Radar Waveform Classification Using Deep Learning
• Sequential Feature Selection for Speech Emotion Recognition
• Keyword Spotting in Noise Using MFCC and LSTM Networks
• Acoustic Scene Recognition Using Late Fusion

New examples for reinforcement learning tasks include:

• Create Simulink Environment and Train Agent
• Create Agent Using Deep Network Designer and Train Using Image Observations
• Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation
• Train DQN Agent for Lane Keeping Assist Using Parallel Computing

New code generation examples include:

• Generate C++ Code for Object Detection Using YOLO v2 and Intel MKL-DNN
• Code Generation and Deployment of MobileNet-v2 Network to Raspberry Pi
• Deep Learning Prediction on ARM Mali GPU
• Code Generation for a Sequence-to-Sequence LSTM Network

Functionality being removed or changed
AverageImage property of imageInputLayer and image3dInputLayer will be removed
Still runs

The AverageImage property of imageInputLayer and image3dInputLayer will be removed. Use
Mean instead. To update your code, replace all instances of AverageImage with Mean. There are no
differences between the properties that require additional updates to your code.

imageInputLayer and image3dInputLayer, by default, use channel-wise normalization
Behavior change

Starting in R2019b, imageInputLayer and image3dInputLayer, use channel-wise normalization
by default. In previous versions, these layers used element-wise normalization. To reproduce this
behavior, set the NormalizationDimension option of these layers to 'element'.

sequenceInputLayer, by default, uses channel-wise zero-center normalization
Behavior change

Starting in R2019b, sequenceInputLayer uses channel-wise zero-center normalization by default
when Normalization is 'zerocenter'. In previous versions, this layer used element-wise
normalization. To reproduce this behavior, set the NormalizationDimension option of this layer to
'element'.
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Deep Network Designer: Create networks for computer vision and text
applications
Use Deep Network Designer to create networks for computer vision and text applications. Deep
Network Designer now supports deep learning layers in Computer Vision Toolbox and Text Analytics
Toolbox for applications such as semantic segmentation, object detection, and text classification. For
a list of layers, see List of Deep Learning Layers.

Deep Network Designer: Generate MATLAB code that recreates your
network
Generate MATLAB code that recreates a network constructed in Deep Network Designer and returns
it as a layerGraph object or a Layer array in the MATLAB workspace. Use the generated code to
modify the network using the command line and automate deep learning workflows. You can also save
any pretrained weights and use the generated code to recreate the network including weights.

For more information, see Generate MATLAB Code from Deep Network Designer.

Convolutions for Image Sequences: Create LSTM networks for video
classification and gesture recognition
Create deep learning networks for data containing sequences of images such as video data and
medical images.

• To input sequences of images into a network, use sequenceInputLayer.
• To apply convolutional operations independently on each time step, first convert the sequences of

images to an array of images using a sequenceFoldingLayer.
• To restore the sequence structure after applying these operations, use a

sequenceUnfoldingLayer.
• To convert the output to an array of feature vectors, use a flattenLayer. After the flatten layer,

you can use LSTM and BiLSTM layers.

For an example, see Classify Videos Using Deep Learning.

Layer Initialization: Initialize layer weights and biases using
initializers or a custom function
Initialize layer weights and biases using initializers such as the Glorot initializer (also known as the
Xavier initializer), the He initializer, and orthogonal initializers. To specify the initializer for the
weights and biases of convolutional layers or fully connected layers, use the
'WeightsInitializer' and 'BiasInitializer' name-value pairs of the layers, respectively. To
specify the initializer for the input weights, the recurrent weights, and the biases for LSTM and
BiLSTM layers, use the 'InputWeightsInitializer', 'RecurrentWeightsInitializer', and
'BiasInitializer' name-value pairs, respectively.

You can specify initializers for these layers:

• batchNormalizationLayer
• bilstmLayer
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• convolution2dLayer
• convolution3dLayer
• fullyConnectedLayer
• groupedConvolution2dLayer
• lstmLayer
• transposedConv2dLayer
• transposedConv3dLayer
• wordEmbeddingLayer (Text Analytics Toolbox)

For an example showing how to compare the different initializers, see Compare Layer Weight
Initializers. For an example showing how to create a custom initialization function, see Specify
Custom Weight Initialization Function.

Grouped Convolutions: Create efficient deep learning networks with
grouped and channel-wise convolutions
When training convolutional neural networks from scratch, for some networks, you can speed up
training and prediction by replacing standard convolutions with grouped or channel-wise (also known
as depth-wise) convolutions. To create a grouped convolutional layer, use
groupedConvolution2dLayer. For channel-wise convolution, use groupedConvolution2dLayer
and set NumGroups to 'channel-wise'.

For an example showing how to create a block of layers for channel-wise separable convolution (also
known as depth-wise separable convolution), see Create Layers for Channel-Wise Separable
Convolution.

3-D Support: New layers enable deep learning with 3-D data
These new layers enable you to work with 3-D data:

• image3dInputLayer
• convolution3dLayer
• transposedConv3dLayer
• averagePooling3dLayer
• maxPooling3dLayer
• concatenationLayer

These existing layers are enhanced to support 3-D data in deep learning networks:

• reluLayer
• leakyReluLayer
• clippedReluLayer
• fullyConnectedLayer
• softmaxLayer
• classificationLayer
• regressionLayer
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For a list of available layers, see List of Deep Learning Layers. For an example showing how to train a
network using 3-D data, see 3-D Brain Tumor Segmentation Using Deep Learning.

Custom Layers: Create custom layers with multiple inputs or multiple
outputs
You can now define custom layers with multiple inputs or multiple outputs. If Deep Learning Toolbox
does not provide the deep learning layer you need for your task, then you can define your own layer
by specifying the layer forward and backward functions.

For more information about defining custom layers, see Define Custom Deep Learning Layers. To
learn how to check that the layer is valid automatically using the checkLayer function, see Check
Custom Layer Validity.

Deep Learning Acceleration: Optimize deep learning applications
using MEX functions
Accelerate prediction, classification, and feature extraction using automatically generated MEX
functions. Use the 'Acceleration','mex' name-value pair with the following functions.

• activations
• classify
• predict

Pretrained Networks: Perform transfer learning with NASNet-Large,
NASNet-Mobile, MobileNet-v2, ShuffleNet, Xception, and Places365-
GoogLeNet pretrained convolutional neural networks
You can now install add-ons for the NASNet-Large, NASNet-Mobile, MobileNet-v2, ShuffleNet,
Xception, and Places365-GoogLeNet pretrained convolutional neural networks. To download and
install the pretrained networks, use the Add-On Explorer. You can also download the networks from
MathWorks Deep Learning Toolbox Team. After you install the add-ons, use the nasnetlarge,
nasnetmobile, mobilenetv2, shufflenet, xception, and googlenet functions to load the
networks, respectively. Places365-GoogLeNet is a version of GoogLeNet that is trained on the
Places365 data set and classifies images into 365 different place categories, such as field, park,
runway, and lobby. To load this network, use net = googlenet('Weights','places365').

To retrain a network on a new classification task, follow the steps in Train Deep Learning Network to
Classify New Images and load the pretrained network you want to use instead of GoogLeNet.

For more information on pretrained neural networks in MATLAB, see Pretrained Deep Neural
Networks.

Deep Learning Layers: Hyperbolic tangent and exponential linear unit
activation layers
You can now use hyperbolic tangent (tanh) and exponential linear unit (ELU) layers as activation
layers in deep learning networks. To create a tanh or ELU layer, use tanhLayer and eluLayer,
respectively.
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For a list of available layers, see List of Deep Learning Layers.

Deep Learning Visualization: Investigate network predictions using
class activation mapping
Follow the example Investigate Network Predictions Using Class Activation Mapping and use the
class activation mapping (CAM) technique to investigate and explain the predictions of a deep
convolutional neural network for image classification.

Deep Learning Examples: Explore deep learning workflows
New examples and topics help you progress with deep learning:

• Investigate Network Predictions Using Class Activation Mapping
• Classify Videos Using Deep Learning
• Run Multiple Deep Learning Experiments
• Train Network Using Out-of-Memory Sequence Data
• Compare Layer Weight Initializers
• Specify Custom Weight Initialization Function

New examples for computer vision problems include:

• Object Detection Using YOLO v2 Deep Learning
• 3-D Brain Tumor Segmentation Using Deep Learning

New examples for text problems include:

• Classify Text Data Using Convolutional Neural Network
• Classify Out-of-Memory Text Data Using Deep Learning

New examples for signal and audio processing include:

• Cocktail Party Source Separation Using Deep Learning Networks
• Voice Activity Detection in Noise Using Deep Learning
• Modulation Classification with Deep Learning
• Spoken Digit Recognition with Wavelet Scattering and Deep Learning
• Waveform Segmentation Using Deep Learning

New code generation examples include:

• Code Generation for Semantic Segmentation Network using U-net
• Train and Deploy Fully Convolutional Networks for Semantic Segmentation
• Code Generation for Object Detection Using YOLO v2
• Code Generation for Deep Learning on ARM Targets
• Code Generation for Deep Learning on Raspberry Pi
• Deep Learning Prediction with ARM Compute Using cnncodegen
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Functionality being removed or changed
Glorot is default weights initialization for convolution, transposed convolution, and fully
connected layers
Behavior change

Starting in R2019a, the software, by default, initializes the layer weights of convolution2dLayer,
transposedConv2dLayer, and fullyConnectedLayer using the Glorot initializer. This behavior
helps stabilize training and usually reduces the training time of deep networks.

In previous releases, the software, by default, initializes the layer weights by sampling from a normal
distribution with a mean of zero and a variance of 0.01. To reproduce this behavior, set the
'WeightsInitializer' option of these layers to 'narrow-normal'.

Glorot is default input weights initialization for LSTM and BiLSTM layers
Behavior change

Starting in R2019a, the software, by default, initializes the layer input weights of lstmLayer and
bilstmLayer using the Glorot initializer. This behavior helps stabilize training and usually reduces
the training time of deep networks.

In previous releases, the software, by default, initializes the layer input weights by sampling from a
normal distribution a mean of zero and a variance of 0.01. To reproduce this behavior, set the
'InputWeightsInitializer' option of these layers to 'narrow-normal'.

Orthogonal is default recurrent weights initialization for LSTM and BiLSTM layers
Behavior change

Starting in R2019a, the software, by default, initializes the layer recurrent weights of LSTM and
BiLSTM layers with Q, the orthogonal matrix given by the QR decomposition of Z = QR for a random
matrix Z sampled from a unit normal distribution. This behavior helps stabilize training and usually
reduces the training time of deep networks.

In previous releases, the software, by default, initializes the layer recurrent weights by sampling from
a normal distribution with a mean of zero and a variance of 0.01. To reproduce this behavior, set the
'RecurrentWeightsInitializer' option of the layer to 'narrow-normal'.

Custom layers have new properties NumInputs, InputNames, NumOutputs, and
OutputNames

Starting in R2019a, custom layers have the new properties NumInputs, InputNames, NumOutputs,
and OutputNames. These properties enable support for custom layers with multiple inputs and
multiple outputs.

If you use a custom layer created in R2018b or earlier, the layer cannot have any properties named
NumInputs, InputNames, NumOutputs, or OutputNames. You must rename these properties to use
the layer in R2019a and onwards.

Cropping property of TransposedConvolution2DLayer will be removed
Still runs

Cropping property of TransposedConvolution2DLayer will be removed. Use CroppingSize
instead. To update your code, replace all instances of the Cropping property with CroppingSize.
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matlab.io.datastore.MiniBatchable is not recommended for custom image preprocessing
Still runs

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had
to specify a custom read function using the readFcn property of imageDatastore. However,
reading files using a custom read function was slow because imageDatastore did not prefetch files.

In R2018a, the four classes matlab.io.datastore.MiniBatchable,
matlab.io.datastore.BackgroundDispatchable, matlab.io.datastore.Shuffleable, and
matlab.io.datastore.PartitionableByIndex were introduced as a solution to perform custom
image preprocessing with support for prefetching, shuffling, and parallel training. Implementing a
custom mini-batch datastore using these classes has several challenges and limitations.

• In addition to specifying the preprocessing operations, you must also define properties and
methods to support reading data in batches, reading data by index, and partitioning and shuffling
data.

• You must specify a value for the NumObservations property, but this value may be ill-defined or
difficult to define in real-world applications.

• Custom mini-batch datastores are not flexible enough to support common deep learning
workflows, such as deployed workflows using GPU Coder™.

Starting in R2019a, built-in datastores natively support prefetch, shuffling, and parallel training when
reading batches of data. The transform function is the preferred way to perform custom image
preprocessing using built-in datastores. The combine function is the preferred way to concatenate
read data from multiple datastores, including transformed datastores. Concatenated data can serve
as the network inputs and expected responses for training deep learning networks. The transform
and combine functions have several advantages over custom mini-batch datastores.

• The functions enable data preprocessing and concatenation for all types of datastores, including
imageDatastore.

• The transform function requires you to define only the data processing pipeline.
• When used on a deterministic datastore, the functions support tall data types and MapReduce.
• The functions support deployed workflows.

For more information about custom image preprocessing, see Preprocess Images for Deep Learning.

matlab.io.datastore.BackgroundDispatchable and matlab.io.datastore.PartitionableByIndex
are not recommended
Still runs

matlab.io.datastore.BackgroundDispatchable and
matlab.io.datastore.PartitionableByIndex add support for prefetching and parallel training
to custom mini-batch datastores. You can use custom mini-batch datastores to preprocess sequence,
time series, or text data, but recurrent networks such as LSTM networks do not support prefetching
or parallel and multi-GPU training.

Starting in R2019a, built-in datastores natively support prefetching and parallel training, so custom
mini-batch datastores are not recommended for custom image preprocessing.

There are no plans to remove matlab.io.datastore.BackgroundDispatchable or
matlab.io.datastore.PartitionableByIndex at this time.
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Renamed Product: Neural Network Toolbox renamed to Deep Learning
Toolbox
Neural Network Toolbox™ now has the name Deep Learning Toolbox.

Deep Network Designer: Edit and build deep learning networks
Build, visualize, and edit deep learning networks interactively in the Deep Network Designer app.

• Import pretrained networks and edit them for transfer learning.
• Edit networks and build new networks from scratch.
• Drag and drop to add new layers and create new connections.
• View and edit layer properties.
• Analyze the network to check for correct architecture and detect problems before training.
• Export the network to the workspace, where you can save or train the network.

For examples, see:

• Transfer Learning with Deep Network Designer
• Build Networks with Deep Network Designer
• Interactive Transfer Learning Using AlexNet
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ONNX Support: Import and export models using the ONNX model
format for interoperability with other deep learning frameworks
Export a trained MATLAB deep learning network to the ONNX (Open Neural Network Exchange)
model format using the exportONNXNetwork function. You can then import the ONNX model to
other deep learning frameworks, such as TensorFlow, that support ONNX model import.

Import deep learning networks and network architectures from ONNX using importONNXNetwork
and importONNXLayers.

Network Analyzer: Visualize, analyze, and find problems in network
architectures before training
Analyze deep learning network architectures using the analyzeNetwork function. Use the network
analyzer to visualize and understand the network architecture, check that you have defined the
architecture correctly, and detect problems before training. Problems that analyzeNetwork detects
include missing or disconnected layers, incorrectly sized layer inputs, an incorrect number of layer
inputs, and invalid graph structures. For more information, see analyzeNetwork.

LSTM Network Validation: Validate networks for time series data
automatically during training
Validate LSTM networks at regular intervals during network training, and automatically stop training
when validation metrics stop improving.

To perform network validation during training, specify validation data using the 'ValidationData'
name-value pair argument of trainingOptions. You can change the validation frequency using the
'ValidationFrequency' name-value pair argument. For more information, see Specify Validation
Data.

For an example showing how to specify validation data for an LSTM network, see Classify Text Data
Using Deep Learning.

Network Assembly: Assemble networks from imported layers and
weights without training
Assemble networks from imported layers and weights without training using the assembleNetwork
function. You can use this function for the following tasks:

• Convert a layer array or layer graph to a network ready for prediction.
• Assemble networks from imported layers.
• Modify the weights of a trained network.

For an example showing how to assemble a network from pretrained layers, see Assemble Network
from Pretrained Keras Layers.
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Output Layer Validation: Verify custom output layers for validity, GPU
compatibility, and correctly defined gradients
Check custom output layers for validity using checkLayer. You can check GPU compatibility and
correctly defined gradients. For more information, see Check Custom Layer Validity.

Visualization: Investigate network predictions using confusion matrix
charts
Use confusionchart to calculate and plot a confusion matrix for a classification problem using true
and predicted labels. A confusion matrix helps you evaluate how well the classifier performs on a data
set and identify where it is accurate or inaccurate. Additionally, you can:

• Create a confusion matrix chart from a nonnegative integer-valued confusion matrix.
• Control the appearance and behavior of the confusion matrix chart by modifying

ConfusionMatrixChart Properties.
• View summary statistics about your data, such as the number of correctly and incorrectly
classified observations for each predicted and true class.

• Sort the classes of the confusion matrix by the total number of correctly classified observations,
the class-wise precision (positive predictive value), or the class-wise recall (true positive rate) by
using sortClasses.

Dilated Convolution: Change the dilation factor of convolutional layers
to enhance prediction accuracy for tasks such as semantic
segmentation
Specify dilated convolutions (also known as atrous convolutions) using the DilationFactor
property of convolution2dLayer. Use dilated convolutions to increase the receptive field (the area
of the input that the layer can see) of the layer without increasing the number of parameters or
computation.

For an example showing how to use dilated convolutions for semantic segmentation, see Semantic
Segmentation Using Dilated Convolutions

Sequence Mini-Batch Datastores: Develop datastores for sequence,
time series, and signal data
Use custom mini-batch datastores for sequence, time series, and signal data when data is too large to
fit in memory, or to perform specific operations when reading batches of data. You can optionally add
support for functionalities such as shuffling during training, parallel and multi-GPU training, and
background dispatch. For more information, see Develop Custom Mini-Batch Datastore.

For an example showing how to use a custom mini-batch datastore for sequence data, see Train
Network Using Out-of-Memory Sequence Data.

Pretrained Networks: Perform transfer learning with ResNet-18 and
DenseNet-201 pretrained convolutional neural networks
You can now install add-ons for the ResNet-18 and DenseNet-201 pretrained convolutional neural
networks. To download and install the pretrained networks, use the Add-On Explorer. You can also

R2018b

7-4

https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/checklayer.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/check-layer-validity.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/confusionchart.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/mlearnlib.graphics.chart.confusionmatrixchart-properties.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/mlearnlib.graphics.chart.confusionmatrixchart.sortclasses.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/nnet.cnn.layer.convolution2dlayer.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/semantic-segmentation-using-dilated-convolutions.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/semantic-segmentation-using-dilated-convolutions.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/develop-custom-mini-batch-datastore.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/train-network-using-out-of-memory-sequence-data.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/train-network-using-out-of-memory-sequence-data.html


download the networks from MathWorks Deep Learning Toolbox Team. After you install the add-ons,
use the resnet18 and densenet201 functions to load the networks, respectively.

To retrain a network on a new classification task, follow the steps of Train Deep Learning Network to
Classify New Images and load ResNet-18 or DenseNet-201 instead of GoogLeNet.

For more information on pretrained neural networks in MATLAB, see Pretrained Convolutional
Neural Networks.

TensorFlow-Keras: Import LSTM and BiLSTM layers from TensorFlow-
Keras
Import pretrained LSTM and BiLSTM networks and layers from TensorFlow-Keras by using the
importKerasNetwork and importKerasLayers functions.

To use importKerasNetwork and importKerasLayers, you must install the Deep Learning
Toolbox Importer for TensorFlow-Keras Models support package. If this support package is not
installed, the functions provide a download link.

Caffe Importer: Import directed acyclic graph networks from Caffe
Import directed acyclic graph (DAG) networks and network architectures from Caffe. In previous
releases, you could only import networks with layers arranged in a sequence. To import a Caffe
network with weights, use importCaffeNetwork. To import a network architecture without
weights, use importCaffeLayers.

LSTM Layer Activation Functions: Specify state and gate activation
functions
For LSTM layers, specify state and gate activation functions using the StateActivationFunction
and GateActivationFunction properties of lstmLayer respectively. For BiLSTM layers, specify
the state and gate activation functions using the StateActivationFunction and
GateActivationFunction properties of bilstmLayer, respectively.

Deep Learning: New network layers
You can now use the following layers in deep learning networks:

• wordEmbeddingLayer
• roiInputLayer
• roiMaxPooling2dLayer
• regionProposalLayer
• rpnSoftmaxLayer
• rpnClassificationLayer
• rcnnBoxRegressionLayer
• weightedClassificationLayer (custom layer example)
• dicePixelClassificationLayer (custom layer example)
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For a list of available layers, see List of Deep Learning Layers.

Image Data Augmenter: Additional options for augmenting and
visualizing images
The imageDataAugmenter object now offers more flexibility for transforming images and visualizing
the effect of the transformation.

• The augment function can apply identical random transformations to multiple images. Use the
augment function to apply identical transformations to input and response image pairs in a
custom mini-batch datastore.

You can also use the augment function to easily visualize the transformations applied to sample
images.

• The new 'RandScale' property of imageDataAugmenter scales an image uniformly in the
vertical and horizontal directions to maintain the image aspect ratio.

• Several properties of imageDataAugmenter now support sampling over disjoint intervals or
using nonuniform probability distributions. Specify a custom sampling function using a function
handle.

Deep Learning Examples: Explore deep learning workflows
New examples and topics help you progress with deep learning.

• Use the example Train Deep Learning Network to Classify New Images to fine-tune any pretrained
network for a new image classification task.

• Compare Pretrained Networks
• Transfer Learning with Deep Network Designer
• Interactive Transfer Learning Using AlexNet
• Build Networks with Deep Network Designer
• Deep Learning Tips and Tricks
• Assemble Network from Pretrained Keras Layers
• List of Deep Learning Layers
• Convert Classification Network into Regression Network
• Resume Training from Checkpoint Network
• Semantic Segmentation Using Dilated Convolutions
• Image Processing Operator Approximation Using Deep Learning
• Assemble Network from Pretrained Keras Layers
• Train Network Using Out-of-Memory Sequence Data
• Denoise Speech Using Deep Learning Networks
• Classify Gender Using Long Short-Term Memory Networks

New examples for text problems include:

• Classify Text Data Using Deep Learning
• Generate Text Using Deep Learning
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• Pride and Prejudice and MATLAB
• Word-By-Word Text Generation Using Deep Learning
• Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore

New examples for deep learning code generation include:

• Deep Learning Prediction with Intel MKL-DNN
• Code Generation for Denoising Deep Neural Network
• Code Generation for Semantic Segmentation Network

Functionality being removed or changed
'ValidationPatience' training option default is Inf
Behavior change

Starting in R2018b, the default value of the 'ValidationPatience' option in trainingOptions
is Inf, which means that automatic stopping via validation is turned off. This behavior prevents the
training from stopping before sufficiently learning from the data.

In previous releases, the default value is 5. To reproduce this behavior, set the
'ValidationPatience' option in trainingOptions to 5.

ClassNames property of ClassificationOutputLayer will be removed
Still runs

ClassNames property of ClassificationOutputLayer will be removed. Use Classes instead. To
update your code, replace all instances of the ClassNames property with Classes. There are some
differences between the functions that require additional updates to your code.

The ClassNames property contains a cell array of character vectors. The Classes property contains
a categorical array. To use the Classes property with functions that require cell array input, convert
the classes using the cellstr function.

'ClassNames' option of importKerasNetwork, importCaffeNetwork, and
importONNXNetwork will be removed
Still runs

The 'ClassNames' option of importKerasNetwork, importCaffeNetwork, and
importONNXNetwork will be removed. Use 'Classes' instead. To update your code, replace all
instances of 'ClassNames' with 'Classes'. There are some differences between the
corresponding properties in classification output layers that require additional updates to your code.

The ClassNames property of a classification output layer is a cell array of character vectors. The
Classes property is a categorical array. To use the value of Classes with functions that require cell
array input, convert the classes using the cellstr function.

Different file name for checkpoint networks
Behavior change

Starting in R2018b, when saving checkpoint networks, the software assigns file names beginning
with net_checkpoint_. In previous releases, the software assigns file names beginning with
convnet_checkpoint_. For more information, see the 'CheckpointPath' option in
trainingOptions.
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If you have code that saves and loads checkpoint networks, then update your code to load files with
the new name.
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Long Short-Term Memory (LSTM) Networks: Solve regression problems
with LSTM networks and learn from full sequence context using
bidirectional LSTM layers
Use recurrent LSTM networks to solve regression problems and use bidirectional LSTM networks to
learn from full sequence context.

For an example showing how to create an LSTM network for sequence-to-sequence regression, see
Sequence-to-Sequence Regression Using Deep Learning. For an example showing how to forecast
future values in a time series, see Time Series Forecasting Using Deep Learning.

To create an LSTM network that learns from complete sequences at each time step, include a
bidirectional LSTM layer in your network by using bilstmLayer.

Deep Learning Optimization: Improve network training using Adam,
RMSProp, and gradient clipping
Use the Adam (adaptive moment estimation) and RMSProp (root-mean-square propagation)
optimizers and gradient clipping to train deep learning neural networks.

To create training options for the Adam or RMSProp solvers, use the trainingOptions function.
trainingOptions('adam') and trainingOptions('rmsprop') create training options for the
Adam and RMSProp solvers, respectively. To specify solver options, use the
'GradientDecayFactor', 'SquaredGradientDecayFactor', and 'Epsilon' name-value pair
arguments.

To use gradient clipping when training neural networks, use the'GradientThreshold' and
'GradientThresholdMethod' name-value pair arguments of trainingOptions.

Deep Learning Data Preprocessing: Read data and define
preprocessing operations efficiently for training and prediction
Read and preprocess data efficiently for neural network training, prediction, and validation. You can
use a built-in type of mini-batch datastore, such as an augmentedImageDatastore, to perform data
augmentation with limited preprocessing operations, including resizing, rotation, reflection, and
cropping.

Define custom data preprocessing operations by creating your own mini-batch datastore. You can
optionally add support for functionality such as shuffling during training, parallel and multi-GPU
training, and background dispatch. For more information, see Develop Custom Mini-Batch Datastore.

Compatibility Considerations
In previous releases, you could preprocess images with resizing, rotation, reflection, and other
geometric transformations by using an augmentedImageSource. The augmentedImageSource
function now creates an augmentedImageDatastore object. An augmentedImageDatastore
behaves similarly to an augmentedImageSource, with additional properties and methods to assist
with data augmentation.
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You can now use augmentedImageDatastore for both training and prediction. In the previous
release, you could use augmentedImageSource for training but not prediction.

Deep Learning Layer Validation: Check layers for validity, GPU
compatibility, and correctly defined gradients
If you create a custom deep learning layer, then you can check that your layer is valid and GPU
compatible, and that it calculates gradients correctly, by using checkLayer.

Directed Acyclic Graph (DAG) Networks: Accelerate DAG network
training using multiple GPUs and compute intermediate layer
activations
Speed up training of deep learning DAG networks using multiple GPUs. To train networks using
multiple GPUs, specify the 'ExecutionEnvironment' name-value pair argument of
trainingOptions.

To use DAG networks for feature extraction or visualization of layer activations, use the
activations function.

Confusion Matrix: Plot confusion matrices for categorical labels
Plot confusion matrices for categorical labels by using the plotconfusion function.
plotconfusion(targets,outputs) plots a confusion matrix for the true labels targets and the
predicted labels outputs. For an example, see Plot Confusion Matrix Using Categorical Labels.

Multispectral Deep Learning: Train convolutional neural networks on
multispectral images
Train convolutional neural networks on images with an arbitrary number of channels. To specify the
number of input channels to a network, set the InputSize property of the image input layer. For an
example, see Semantic Segmentation of Multispectral Images Using Deep Learning.

Directed Acyclic Graph (DAG) Network Editing: Replace a layer in a
layer graph more easily
Easily replace a layer in a LayerGraph object with a new layer or array of layers by using the
replaceLayer function. In previous releases, you could replace layers by editing the layer graph,
but you had to update the layer connections manually. The new function updates the layer
connections automatically.

The replaceLayer function requires the Neural Network Toolbox Importer for TensorFlow-Keras
Models support package. If this support package is not installed, type importKerasLayer or
importKerasNetwork in the command line for a download link.

Pretrained Networks: Accelerate transfer learning by freezing layer
weights
Speed up training of pretrained convolutional neural networks by freezing the weights of initial
network layers. Freeze the layer weights by setting the learning rate factors of the layers to zero. If
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you freeze the weights of the initial layers of a network, then trainNetwork does not compute the
gradients of the frozen layer weights. For an example showing how to freeze layer weights, see
Transfer Learning Using GoogLeNet.

Pretrained Networks: Transfer learning with pretrained SqueezeNet
and Inception-ResNet-v2 convolutional neural networks
You can now install add-ons for the SqueezeNet and Inception-ResNet-v2 pretrained convolutional
neural networks. To download and install the pretrained networks, use the Add-On Explorer. You can
also download the networks from MathWorks Neural Network Toolbox Team. After you install the
add-ons, use the squeezenet and inceptionresnetv2 functions to load the networks, respectively.

To retrain a network on a new classification task, follow the steps of Transfer Learning Using
GoogLeNet. Load a SqueezeNet or Inception-ResNet-v2 network instead of GoogLeNet, and change
the names of the layers that you remove and connect to match the names of your pretrained network.
For more information, see squeezenet and inceptionresnetv2.

For more information on pretrained neural networks in MATLAB, see Pretrained Convolutional
Neural Networks.

Deep Learning Network Analyzer: Visualize, analyze, and find issues
in network architectures
Analyze deep learning network architectures using the analyzeNetwork function. Use the network
analyzer to visualize and understand the network architecture, check that you have defined the
architecture correctly, and detect problems before training. Problems that analyzeNetwork detects
include missing or disconnected layers, mismatching or incorrect sizes of layer inputs, incorrect
number of layer inputs, and invalid graph structures.

The analyzeNetwork function requires the Deep Learning Network Analyzer for Neural Network
Toolbox support package. To download and install support package, use the Add-On Explorer. You can
also download the support package from MathWorks Neural Network Toolbox Team. For more
information, see analyzeNetwork.

ONNX Support: Import and export models using the ONNX model
format for interoperability with other deep learning frameworks
Export a trained MATLAB deep learning network to the ONNX (Open Neural Network Exchange)
model format using the exportONNXNetwork function. You can then import the ONNX model to
other deep learning frameworks, such as TensorFlow, that support ONNX model import.

Import deep learning networks and network architectures from ONNX using importONNXNetwork
and importONNXLayers.

Deep Learning Speech Recognition: Train a simple deep learning
model to detect speech commands
Use the Deep Learning Speech Recognition example to learn how to train a simple neural network to
recognize a given set of speech commands (Requires Audio Toolbox™).
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Parallel Deep Learning Workflows: Explore deep learning with multiple
GPUs locally or in the cloud
Use new examples to explore options for scaling up deep learning training. You can use multiple
GPUs locally or in the cloud without changing your code. Use parallel computing to train multiple
networks locally or on cloud clusters, and use datastores to access cloud data. New examples include:

• Train Network in the Cloud Using Built-in Parallel Support
• Use parfor to Train Multiple Deep Learning Networks
• Use parfeval to Train Multiple Deep Learning Networks
• Upload Deep Learning Data to the Cloud
• Send Deep Learning Batch Job To Cluster

To learn about options, see Scale Up Deep Learning in Parallel and in the Cloud.

Deep Learning Examples: Explore deep learning applications
Use examples to learn about different applications of deep learning. New examples for sequence,
time series, text, and image problems include:

• Deep Learning Speech Recognition
• Train Residual Network on CIFAR-10
• Time Series Forecasting Using Deep Learning
• Sequence-to-Sequence Classification Using Deep Learning
• Sequence-to-Sequence Regression Using Deep Learning
• Classify Text Data Using Deep Learning
• Semantic Segmentation of Multispectral Images Using Deep Learning
• Single Image Super-Resolution Using Deep Learning
• JPEG Image Deblocking Using Deep Learning
• Remove Noise from Color Image Using Pretrained Neural Network

For more examples of deep learning applications, see Deep Learning Applications and Deep Learning
GPU Code Generation.

Functionality Being Removed or Changed

Functionality Result Use Instead Compatibility
Considerations

Default output format of
activations

Still runs Not applicable In R2018a, the new
default output format of
activations is a 4-D
array. To reproduce the
old default behavior, set
the 'OutputAs' value
to 'rows'.
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Functionality Result Use Instead Compatibility
Considerations

augmentedImageSour
ce

Still runs augmentedImageData
store

In R2018a, you cannot
create an
augmentedImageSour
ce object. The
augmentedImageSour
ce function now creates
an
augmentedImageData
store object.

OutputSize property
of lstmLayer

Still runs NumHiddenUnits
property

Replace all instances of
the OutputSize
property of lstmLayer
objects with
NumHiddenUnits.

R2018a

8-6

https://www.mathworks.com/help/releases/R2018a/nnet/ref/augmentedimagesource.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/augmentedimagesource.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/augmentedimagedatastore.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/augmentedimagedatastore.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/nnet.cnn.layer.lstmlayer.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/nnet.cnn.layer.lstmlayer.html


R2017b

Version: 11.0

New Features

Bug Fixes

Compatibility Considerations

9



Directed Acyclic Graph (DAG) Networks: Create deep learning
networks with more complex architecture to improve accuracy and
use many popular pretrained models
You can create and train DAG networks for deep learning. A DAG network is a neural network whose
layers can be arranged as a directed acyclic graph. DAG networks can have a more complex
architecture with layers that have inputs from, or outputs to, multiple layers.

To create and train a DAG network:

• Create a LayerGraph object using layerGraph. The layer graph specifies the network
architecture. You can create an empty layer graph and then add layers to it. You can also create a
layer graph directly from an array of network layers. The layers in the graph are automatically
connected sequentially.

• Add layers to the layer graph using addLayers and remove layers from the graph using
removeLayers.

• Connect layers of the layer graph using connectLayers and disconnect layers using
disconnectLayers.

• Plot the network architecture using plot.
• Train the network using the layer graph as the layers input argument to trainNetwork. The

trained network is a DAGNetwork object.
• Perform classification and prediction on new data using classify and predict.

For an example showing how to create and train a DAG network, see Create and Train DAG Network
for Deep Learning.

You can also load a pretrained DAG network by installing the Neural Network Toolbox Model for
GoogLeNet Network add-on. For a transfer learning example, see Transfer Learning Using
GoogLeNet. For more information, see googlenet.

Long Short-Term Memory (LSTM) Networks: Create deep learning
networks with the LSTM recurrent neural network topology for time-
series classification and prediction
You can create and train LSTM networks for deep learning. LSTM networks are a type of recurrent
neural network (RNN) that learn long-term dependencies between time steps of sequence data.

LSTM networks can be used for the following types of problems:

• Predict labels for a time series (sequence-to-label classification).
• Predict a sequence of labels for a time series (sequence-to-sequence classification).

To create an LSTM network:

• Include a sequence input layer using sequenceInputLayer, which inputs time-series data into
the network.

• Include an LSTM layer using lstmLayer, which defines the LSTM architecture of the network.

For an example showing sequence-to-label classification, see Classify Sequence Data Using LSTM
Networks.
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You might want to make multiple predictions on parts of a long sequence, or might not have the
complete time series in advance. For these tasks, you can make the LSTM network remember and
forget the network state between predictions. To configure the state of LSTM networks, use the
following functions:

• Make predictions and update the network state using classifyAndUpdateState and
predictAndUpdateState.

• Reset the network state using resetState.

To learn more, see Long Short-Term Memory Networks.

Deep Learning Validation: Automatically validate network and stop
training when validation metrics stop improving
You can validate deep neural networks at regular intervals during network training, and
automatically stop training when validation metrics stop improving.

To perform network validation during training, specify validation data using the 'ValidationData'
name-value pair argument of trainingOptions. By default, the software validates the network
every 50 training iterations by predicting the response of the validation data and calculating the
validation loss and accuracy (root mean square error for regression networks). You can change the
validation frequency using the 'ValidationFrequency' name-value pair argument.

Network training stops when the validation loss stops improving. By default, if the validation loss is
larger than or equal to the previously smallest loss five times in a row, then network training stops. To
change the number of times that the validation loss is allowed to not decrease before training stops,
use the 'ValidationPatience' name-value pair argument.

For more information, see Specify Validation Data.

Deep Learning Layer Definition: Define new layers with learnable
parameters, and specify loss functions for classification and
regression output layers
You can define new deep learning layers and specify your own forward propagation, backward
propagation, and loss functions. To learn more, see Define New Deep Learning Layers.

• For an example showing how to define a PReLU layer, a layer with learnable parameters, see
Define a Layer with Learnable Parameters.

• For an example showing how to define a classification output layer and specify a loss function, see
Define a Classification Output Layer.

• For an example showing how to define a regression output layer and specify a loss function, see
Define a Regression Output Layer.

Deep Learning Training Plots: Monitor training progress with plots of
accuracy, loss, validation metrics, and more
You can monitor deep learning training progress by plotting various metrics during training. Plot
accuracy, loss, and validation metrics to determine if and how quickly the network accuracy is
improving, and whether the network is starting to overfit the training data. During training, you can
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stop training and return the current state of the network by clicking the stop button in the top-right
corner. For example, you might want to stop training when the accuracy of the network reaches a
plateau and it is clear that the accuracy is no longer improving.

To turn on the training progress plot, use the 'Plots' name-value pair argument of
trainingOptions. For more information, see Monitor Deep Learning Training Progress.

Deep Learning Image Preprocessing: Efficiently resize and augment
image data for training
You can now preprocess images for network training with more options, including resizing, rotation,
reflection, and other geometric transformations. To train a network using augmented images, create
an augmentedImageSource and use it as an input argument to trainNetwork. You can configure
augmentation options using the imageDataAugmenter function. For more information, see
Preprocess Images for Deep Learning.

Augmentation helps to prevent the network from overfitting and memorizing the exact details of the
training images. It also increases the effective size of the training data set by generating new images
based on the training images. For example, use augmentation to generate new images that randomly
flip the training images along the vertical axis, and randomly translate the training images
horizontally and vertically.

To resize images in other contexts, such as for prediction, classification, and network validation
during training, use imresize.

Compatibility Considerations
In previous releases, you could perform limited image cropping and reflection using the
DataAugmentation property of imageInputLayer. The DataAugmentation property is not
recommended. Use augmentedImageSource instead.

Bayesian Optimization of Deep Learning: Find optimal settings for
training deep networks (Requires Statistics and Machine Learning
Toolbox)
Find optimal network parameters and training options for deep learning using Bayesian optimization
and the bayesopt function. For an example, see Deep Learning Using Bayesian Optimization.

GoogLeNet Pretrained Network: Transfer learning with pretrained
GoogLeNet convolutional neural network
You can now install the Neural Network Toolbox Model for GoogLeNet Network add-on.

You can access the model using the googlenet function. If the Neural Network Toolbox Model for
GoogLeNet Network support package is not installed, then the function provides a link to the
required support package in the Add-On Explorer. GoogLeNet won the ImageNet Large-Scale Visual
Recognition Challenge in 2014. The network is smaller and typically faster than VGG networks, and
smaller and more accurate than AlexNet on the ImageNet challenge data set. The network is a
directed acyclic graph (DAG) network, and googlenet returns the network as a DAGNetwork object.
You can use this pretrained model for classification and transfer learning. For an example, see
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Transfer Learning Using GoogLeNet. For more information on pretrained neural networks in
MATLAB, see Pretrained Convolutional Neural Networks.

ResNet-50 and ResNet-101 Pretrained Networks: Transfer learning
with pretrained ResNet-50 and ResNet-101 convolutional neural
networks
You can now install add-ons for the ResNet-50 and ResNet-101 pretrained convolutional neural
networks. To download and install the pretrained networks, use the Add-On Explorer. To learn more
about finding and installing add-ons, see Get Add-Ons. You can also download the networks from
MathWorks Neural Network Toolbox Team. After you install the add-ons, use the resnet50 and
resnet101 functions to load the networks, respectively.

To retrain a network on a new classification task, follow the steps of Transfer Learning Using
GoogLeNet. Load a ResNet network instead of GoogLeNet, and change the names of the layers that
you remove and connect to match the names of the ResNet layers. To extract the layers and
architecture of the network for further processing, use layerGraph. For more information, see
resnet50 and resnet101.

For more information on pretrained neural networks in MATLAB, see Pretrained Convolutional
Neural Networks.

Inception-v3 Pretrained Network: Transfer learning with pretrained
Inception-v3 convolutional neural network
You can now install the add-on for the Inception-v3 pretrained convolutional neural network. To
download and install the pretrained network, use the Add-On Explorer. To learn more about finding
and installing add-ons, see Get Add-Ons. You can also download the network from MathWorks Neural
Network Toolbox Team. After you install the add-on, use the inceptionv3 function to load the
network.

To retrain the network on a new classification task, follow the steps of Transfer Learning Using
GoogLeNet. Load the Inception-v3 network instead of GoogLeNet, and change the names of the
layers that you remove and connect to match the names of the Inception-v3 layers. To extract the
layers and architecture of the network for further processing, use layerGraph. For more
information, see inceptionv3.

For more information on pretrained neural networks in MATLAB, see Pretrained Convolutional
Neural Networks.

Batch Normalization Layer: Speed up network training and reduce
sensitivity to network initialization
Use batch normalization layers between convolutional layers and nonlinearities, such as ReLU layers,
to speed up network training and reduce the sensitivity to network initialization. Batch normalization
layers normalize the activations and gradients propagating through a neural network, making
network training an easier optimization problem. To take full advantage of this fact, you can try
increasing the learning rate. Because the optimization problem is easier, the parameter updates can
be larger and the network can learn faster.
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To create a batch normalization layer, use batchNormalizationLayer.

Deep Learning: New network layers
You can now use the following layers in deep learning networks:

• Batch normalization layer — Create a layer using batchNormalizationLayer.
• Transposed convolution layer — Create a layer using transposedConv2dLayer.
• Max unpooling layer — Create a layer using maxUnpooling2dLayer.
• Leaky Rectified Linear Unit (ReLU) layer — Create a layer using leakyReluLayer.
• Clipped Rectified Linear Unit (ReLU) layer — Create a layer using clippedReluLayer.
• Addition layer — Create a layer using additionLayer.
• Depth concatenation layer — Create a layer using depthConcatenationLayer.
• Sequence input layer for long short-term memory (LSTM) networks — Create a layer using

sequenceInputLayer.
• LSTM layer — Create a layer using LSTMLayer.

Pretrained Models: Import pretrained CNN models and layers from
TensorFlow-Keras
You can import pretrained CNN models and weights from TensorFlow-Keras by using the
importKerasNetwork function. This function imports a Keras model as a SeriesNetwork or
DAGNetwork object, depending on the type of the Keras network. You can then use the imported
classification or regression model for prediction or transfer learning on new data.

Alternatively, you can import CNN layers from TensorFlow-Keras by using the importKerasLayers
function. This function imports the network architecture as a Layerarray or LayerGraph object. You
can then specify the training options using the trainingOptions function and train this network
using the trainNetwork function.

For both importKerasNetwork and importKerasLayers, you must install the Neural Network
Toolbox Importer for TensorFlow-Keras Models add-on from the MATLAB® Add-Ons menu.

Functionality Being Removed or Changed

Functionality Result Use Instead Compatibility
Considerations

DataAugmentation
property of the
imageInputLayer

Still runs augmentedImageSour
ce

The
DataAugmentation
property of
imageInputLayer is
not recommended. Use
augmentedImageSour
ce instead. For more
information, see
Preprocess Images for
Deep Learning.
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Functionality Result Use Instead Compatibility
Considerations

Padding property of
Convolution2dLayer,
MaxPooling2dLayer,
and
AveragePooling2dLa
yer objects

Warns PaddingSize property
of
Convolution2dLayer,
MaxPooling2dLayer,
and
AveragePooling2dLa
yer objects

Replace all instances of
Padding property with
PaddingSize. When
you create network
layers, use the
'Padding' name-value
pair argument to specify
the padding. For more
information, see
Convolution2dLayer,
MaxPooling2dLayer,
and
AveragePooling2dLa
yer.
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Deep Learning for Regression: Train convolutional neural networks
(also known as ConvNets, CNNs) for regression tasks
You can now perform regression for numeric targets (responses) using convolutional neural networks.
While defining your network, specify regressionLayer as the last layer. Specify the training
parameters using the trainingOptions function. Train your network using the trainNetwork
function. To try a regression example showing how to predict angles of rotation of handwritten digits,
see Train a Convolutional Neural Network for Regression.

Pretrained Models: Transfer learning with pretrained CNN models
AlexNet, VGG-16, and VGG-19, and import models from Caffe
(including Caffe Model Zoo)
For pretrained convolutional neural network (CNN) models, AlexNet, VGG-16, and VGG-19, from the
MATLAB Add-Ons menu, you can now install the following add-ons:

• Neural Network Toolbox Model for AlexNet Network
• Neural Network Toolbox Model for VGG-16 Network
• Neural Network Toolbox Model for VGG-19 Network

You can access the models using the functions alexnet, vgg16, and vgg19. These models are
SeriesNetwork objects. You can use these pretrained models for classification and transfer
learning.

You can also import other pretrained CNN models from Caffe by using the importCaffeNetwork
function. This function imports models as a SeriesNetwork object. You can then use these models
for classifying new data.

Alternatively, you can import CNN layers from Caffe by using the importCaffeLayers function.
This function imports the layer architecture as a Layer array. You can then specify the training
options using the trainingOptions function and train this network using the trainNetwork
function.

For both importCaffeNetwork and importCaffeLayers, you can install the Neural Network
Toolbox Importer for Caffe Models add-on from the MATLAB® Add-Ons menu.

Deep Learning with Cloud Instances: Train convolutional neural
networks using multiple GPUs in MATLAB and MATLAB Distributed
Computing Server for Amazon EC2
You can use MATLAB to perform deep learning in the cloud using Amazon Elastic Compute Cloud
(Amazon EC2®) with new P2 instances and data stored in the cloud. If you do not have a suitable GPU
available for faster training of a convolutional neural network, you can use Amazon Elastic Compute
Cloud instead. Try different numbers of GPUs per machine to accelerate training. You can compare
and explore the performance of multiple deep neural network configurations to find the best tradeoff
of accuracy and memory use. Deep learning in the cloud also requires Parallel Computing Toolbox.
For details, see Deep Learning in the Cloud.
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Deep Learning with Multiple GPUs: Train convolutional neural
networks on multiple GPUs on PCs (using Parallel Computing Toolbox)
and clusters (using MATLAB Distributed Computing Server)
You can now train convolutional neural networks (ConvNets) on multiple GPUs and on clusters.
Specify the required hardware using the ExecutionEnvironment name-value pair argument in the
call to the trainingOptions function.

Deep Learning with CPUs: Train convolutional neural networks on
CPUs as well as GPUs
You can now train a convolutional neural network (ConvNet) on a CPU using the trainNetwork
function. If there is no available GPU, by default, then trainNetwork uses a CPU to train the
network. You can also train a ConvNet on multiple CPU cores on your desktop or a cluster using
'ExecutionEnvironment','parallel'.

For specifying the hardware on which to train the network, and for system requirements, see the
ExecutionEnvironment name-value pair argument on trainingOptions.

Deep Learning Visualization: Visualize the features ConvNet has
learned using deep dream and activations
deepDreamImage synthesizes images that strongly activate convolutional neural network (ConvNet)
layers using a version of the deep dream algorithm. Visualizing these images highlights the features
your trained ConvNet has learned, helping you understand and diagnose network behavior. For
examples, see Deep Dream Images Using AlexNet and Visualize Features of a Convolutional Neural
Network.

You can also display network activations on an image to investigate features the network has learned
to identify. To try an example, see Visualize Activations of a Convolutional Neural Network.

table Support: Use data in tables for training of and inference with
ConvNets
The trainNetwork function and predict, activations, and classify methods now accept data
stored in a table for classification and regression problems. For details on how to specify your data,
see the input argument descriptions on the function and method pages.

Progress Tracking During Training: Specify custom functions for
plotting accuracy or stopping at a threshold
When training convolutional neural networks, you can specify one or more custom functions to call at
each iteration during training. You can access and act on information during training, for example, to
plot accuracy, or stop training early based on a threshold. Specify the functions using the OutputFcn
name-value pair argument in trainingOptions. For examples, see Plot Training Accuracy During
Network Training and Plot Progress and Stop Training at Specified Accuracy.
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Deep Learning Examples: Get started quickly with deep learning
New examples and topics help you get started quickly with deep learning in MATLAB.

To find out what tasks you can do, see Deep Learning in MATLAB. To learn about convolutional neural
networks and how they work in MATLAB, see:

• Introduction to Convolutional Neural Networks
• Specify Layers of Convolutional Neural Network
• Set Up Parameters and Train Convolutional Neural Network

New examples include:

• Try Deep Learning in 10 Lines of MATLAB Code
• Create Simple Deep Learning Network for Classification
• Transfer Learning and Fine-Tuning of Convolutional Neural Networks
• Transfer Learning Using AlexNet
• Feature Extraction Using AlexNet
• Deep Dream Images Using AlexNet
• Visualize Activations of a Convolutional Neural Network
• Visualize Features of a Convolutional Neural Network
• Create Typical Convolutional Neural Networks
• Plot Training Accuracy During Network Training
• Plot Progress and Stop Training at Specified Accuracy
• Resume Training from a Checkpoint Network
• Train a Convolutional Neural Network for Regression
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Deep Learning with CPUs: Run trained CNNs to extract features, make
predictions, and classify data on CPUs as well as GPUs
You can choose a CPU to run a pretrained network for extracting features using activations,
predicting image class scores using predict, and estimating image classes using classify. To
specify the hardware on which to run the network, use the 'ExecutionEnvironment' name-value
pair argument in the call to the specific method.

Training a convolutional neural network (ConvNet) requires a GPU. To train a ConvNet, or to run a
pretrained network on a GPU, you must have Parallel Computing Toolbox and a CUDA-enabled
NVIDIA GPU with compute capability 3.0 or higher.

Deep Learning with Arbitrary Sized Images: Run trained CNNs on
images that are different sizes than those used for training
You can run a trained convolutional neural network on arbitrary image sizes to extract features using
the activations method with channels output option. For other output options, the sizes of the
images you use in activations must be the same as the sizes of the ones used for training. To
specify the channels output option, use the OutputAs name-value pair argument in the call to
activations.

Performance: Train CNNs faster when using ImageDatastore object
ImageDatastore allows batch-reading of JPG or PNG image files using prefetching. This feature
enables faster training of convolutional neural networks (ConvNets). If you use a custom function for
reading the images, prefetching does not occur.

Deploy Training of Models: Deploy training of a neural network model
via MATLAB Compiler or MATLAB Compiler SDK
Use MATLAB Runtime to deploy functions that can train a model. You can deploy MATLAB code that
trains neural networks as described in Create Standalone Application from Command Line and
Package Standalone Application with Application Compiler App.

The following methods and functions are NOT supported in deployed mode:

• Training progress dialog, nntraintool.
• genFunction and gensim to generate MATLAB code or Simulink blocks
• view method
• nctool, nftool, nnstart, nprtool, ntstool
• Plot functions (such as plotperform, plottrainstate, ploterrhist, plotregression,

plotfit, and so on)

generateFunction Method: generateFunction generates code for
matrices by default
'MatrixOnly' name-value pair argument of generateFunction method has no effect.
generateFunction by default generates code for only matrices.
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Compatibility Considerations
You do not need to specify for generateFunction to generate code for matrices. Previously, you
needed to specify 'MatrixOnly',true.

alexnet Support Package: Download and use pre-trained convolutional
neural network (ConvNet)
You can use pretrained Caffe version of AlexNet convolutional neural network. Download the network
from the Add-Ons menu.

For more information about the network, see Pretrained Convolutional Neural Network.
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Deep Learning: Train deep convolutional neural networks with built-in
GPU acceleration for image classification tasks (using Parallel
Computing Toolbox)
The new functionality enables you to

• Construct convolutional neural network (CNN) architecture (see Layer).
• Specify training options using trainingOptions.
• Train CNNs using trainNetwork for data in 4D arrays or ImageDatastore.
• Make predictions of class labels using a trained network using predict or classify.
• Extract features from a trained network using activations.
• Perform transfer learning. That is, retrain the last fully connected layer of an existing CNN on new

data.

NOTE: This feature requires the Parallel Computing Toolbox and a CUDA-enabled NVIDIA
GPU with compute capability 3.0 or higher.
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Autoencoder neural networks for unsupervised learning of features
using the trainAutoencoder function
You can train autoencoder neural networks to learn features using the trainAutoencoder function.
The trained network is an Autoencoder object. You can use the trained autoencoder to predict the
inputs for new data, using the predict method. For all the properties and methods of the object, see
the Autoencoder class page.

Deep learning using the stack function for creating deep networks
from autoencoders
You can create deep networks using the stack method. To create a deep network, after training the
autoencoders, you can

1 Extract features from autoencoders using the encode method.
2 Train a softmax layer for classification using the trainSoftmaxLayer function.
3 Stack the encoders and the softmax layer to form a deep network, and train the deep network.

The deep network is a network object.

Improved speed and memory efficiency for training with Levenberg-
Marquardt (trainlm) and Bayesian Regularization (trainbr) algorithms
An optimized MEX version of the Jacobian backpropagation algorithm allows faster training and
reduces memory requirements for training static and open-loop networks using the trainlm and
trainbr functions.

Cross entropy for a single target variable
The crossentropy function supports binary encoding, that is, when there are only two classes and
N = 1 (N is the number of rows in the targets input argument).
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Progress update display for parallel training
The Neural Network Training tool (nntraintool) now displays progress updates when conducting
parallel training of a network.
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Training panels for Neural Fitting Tool and Neural Time Series Tool
Provide Choice of Training Algorithms
The training panels in the Neural Fitting and Neural Time Series tools now let you select a training
algorithm before clicking Train. The available algorithms are:

• Levenberg-Marquardt (trainlm)
• Bayesian Regularization (trainbr)
• Scaled Conjugate Gradient (trainscg)

For more information on using Neural Fitting, see Fit Data with a Neural Network.

For more information on using Neural Time Series, see Neural Network Time Series Prediction and
Modeling.

Bayesian Regularization Supports Optional Validation Stops
Because Bayesian-Regularization with trainbr can take a long time to stop, validation used with
Bayesian-Regularization allows it to stop earlier, while still getting some of the benefits of weight
regularization. Set the training parameter trainParam.max_fail to specify when to make a
validation stop. Validation is disabled for trainbr by default when trainParam.max_fail is set to
0.

For example, to train as before without validation:

[x,t] = house_dataset;
net = feedforwardnet(10,'trainbr');
[net,tr] = train(net,x,t);

To train with validation:

[x,t] = house_dataset;
net = feedforwardnet(10,'trainbr');
net.trainParam.max_fail = 6;
[net,tr] = train(net,x,t);

Neural Network Training Tool Shows Calculations Mode
Neural Network Training Tool now shows its calculations mode (i.e., MATLAB, GPU) in its
Algorithms section.
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Function code generation for application deployment of neural
network simulation (using MATLAB Coder, MATLAB Compiler, and
MATLAB Builder products)
• “New Function: genFunction” on page 17-2
• “Enhanced Tools” on page 17-3

New Function: genFunction

The function genFunction generates a stand-alone MATLAB function for simulating any trained
neural network and preparing it for deployment in many scenarios:

• Document the input-output transforms of a neural network used as a calculation template for
manual reimplementations of the network

• Create a Simulink block using the MATLAB Function block
• Generate C/C++ code with MATLAB Coder™ codegen
• Generate efficient MEX-functions with MATLAB Coder codegen
• Generate stand-alone C executables with MATLAB Compiler™ mcc
• Generate C/C++ libraries with MATLAB Compiler mcc
• Generate Excel® and .COM components with MATLAB Builder™ EX mcc options
• Generate Java components with MATLAB Builder JA mcc options
• Generate .NET components with MATLAB Builder NE mcc options

genFunction(net,'path/name') takes a neural network and file path and produces a standalone
MATLAB function file 'name.m'.

genFunction(_____,'MatrixOnly','yes') overrides the default cell/matrix notation and
instead generates a function that uses only matrix arguments compatible with MATLAB Coder tools.
For static networks the matrix columns are interpreted as independent samples. For dynamic
networks the matrix columns are interpreted as a series of time steps. The default value is 'no'.

genFunction(_____,'ShowLinks','no') disables the default behavior of displaying links to
generated help and source code. The default is 'yes'.

Here a static network is trained and its outputs calculated.

[x,t] = house_dataset;
houseNet = feedforwardnet(10);
houseNet = train(houseNet,x,t);
y = houseNet(x);

A MATLAB function with the same interface as the neural network object is generated and tested,
and viewed.

genFunction(houseNet,'houseFcn');
y2 = houseFcn(x);
accuracy2 = max(abs(y-y2))
edit houseFcn

The new function can be compiled with the MATLAB Compiler tools (license required) to a shared/
dynamically linked library with mcc.

R2013b

17-2

https://www.mathworks.com/help/releases/R2013b/nnet/ref/genfunction.html


mcc -W lib:libHouse -T link:lib houseFcn

Next, another version of the MATLAB function is generated which supports only matrix arguments
(no cell arrays). This function is tested. Then it is used to generate a MEX-function with the MATLAB
Coder tool codegen (license required) which is also tested.
genFunction(houseNet,'houseFcn','MatrixOnly','yes');
y3 = houseFcn(x);
accuracy3 = max(abs(y-y3))

x1Type = coder.typeof(double(0),[13 Inf]); % Coder type of input 1
codegen houseFcn.m -config:mex -o houseCodeGen -args {x1Type}
y4 = houseCodeGen(x);
accuracy4 = max(abs(y-y4))

Here, a dynamic network is trained and its outputs calculated.

[x,t] = maglev_dataset;
maglevNet = narxnet(1:2,1:2,10);
[X,Xi,Ai,T] = preparets(maglevNet,x,{},t);
maglevNet = train(maglevNet,X,T,Xi,Ai);
[y,xf,af] = maglevNet(X,Xi,Ai);

Next, a MATLAB function is generated and tested. The function is then used to create a shared/
dynamically linked library with mcc.

genFunction(maglevNet,'maglevFcn');
[y2,xf,af] = maglevFcn(X,Xi,Ai);
accuracy2 = max(abs(cell2mat(y)-cell2mat(y2)))
mcc -W lib:libMaglev -T link:lib maglevFcn

Next, another version of the MATLAB function is generated which supports only matrix arguments
(no cell arrays). This function is tested. Then it is used to generate a MEX-function with the MATLAB
Coder tool codegen, and the result is also tested.
genFunction(maglevNet,'maglevFcn','MatrixOnly','yes');
x1 = cell2mat(X(1,:)); % Convert each input to matrix
x2 = cell2mat(X(2,:));
xi1 = cell2mat(Xi(1,:)); % Convert each input state to matrix
xi2 = cell2mat(Xi(2,:));
[y3,xf1,xf2] = maglevFcn(x1,x2,xi1,xi2);
accuracy3 = max(abs(cell2mat(y)-y3))

x1Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 1
x2Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 2
xi1Type = coder.typeof(double(0),[1 2]); % Coder type of input 1 states
xi2Type = coder.typeof(double(0),[1 2]); % Coder type of input 2 states
codegen maglevFcn.m -config:mex -o maglevNetCodeGen -args {x1Type x2Type xi1Type xi2Type}
[y4,xf1,xf2] = maglevNetCodeGen(x1,x2,xi1,xi2);
dynamic_codegen_accuracy = max(abs(cell2mat(y)-y4))

Enhanced Tools

The function genFunction is introduced with a new panel in the tools nftool, nctool, nprtool
and ntstool.
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The advanced scripts generated on the Save Results panel of each of these tools includes an example
of deploying networks with genFunction.

For more information, see Deploy Neural Network Functions.

Enhanced multi-timestep prediction for switching between open-loop
and closed-loop modes with NARX and NAR neural networks
Dynamic networks with feedback, such as narxnet and narnet neural networks, can be transformed
between open-loop and closed-loop modes with the functions openloop and closeloop. Closed-loop
networks make multistep predictions. In other words, they continue to predict when external
feedback is missing, by using internal feedback.

It can be useful to simulate a trained neural network up the present with all the known values of a
time-series in open-loop mode, then switch to closed-loop mode to continue the simulation for as
many predictions into the future as are desired. It is now much easier to do this.
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Previously, openloop and closeloop transformed the neural network between those two modes.

net = openloop(net)
net = closeloop(net)

This is still the case. However, these functions now also support the transformation of input and layer
delay state values between open- and closed-loop modes, making switching between closed-loop to
open-loop multistep prediction easier.

[net,xi,ai] = openloop(net,xi,ai);
[net,xi,ai] = closeloop(net,xi,ai);

Here, a neural network is trained to model the magnetic levitation system in default open-loop mode.

[X,T] = maglev_dataset;
net = narxnet(1:2,1:2,10);
[x,xi,ai,t] = preparets(net,X,{},T);
net = train(net,x,t,xi,ai);
view(net)

Then closeloop is used to convert the network to closed-loop form for simulation.

netc = closeloop(net);
[x,xi,ai,t] = preparets(netc,X,{},T);
y = netc(x,xi,ai);
view(netc)

Now consider the case where you might have a record of the Maglev’s behavior for 20 time steps, but
then want to predict ahead for 20 more time steps beyond that.

Define the first 20 steps of inputs and targets, representing the 20 time steps where the output is
known, as defined by the targets t. Then the next 20 time steps of the input are defined, but you use
the network to predict the 20 outputs using each of its predictions feedback to help the network
perform the next prediction.

x1 = x(1:20);
t1 = t(1:20);
x2 = x(21:40);

Then simulate the open-loop neural network on this data:

[x,xi,ai,t] = preparets(net,x1,{},t1);
[y1,xf,af] = net(x,xi,ai);
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Now the final input and layer states returned by the network are converted to closed-loop form along
with the network. The final input states xf, and layer states af, of the open-loop network become the
initial input states xi, and layer states ai, of the closed-loop network.

[netc,xi,ai] = closeloop(net,xf,af);

Typically, preparets is used to define initial input and layer states. Since these have already been
obtained from the end of the open-loop simulation, you do not need preparets to continue with the
20 step predictions of the closed-loop network.

[y2,xf,af] = netc(x2,xi,ai);

Note that x2 can be set to different sequences of inputs to test different scenarios for however many
time steps you would like to make predictions. For example, to predict the magnetic levitation
system’s behavior if 10 random inputs were used:

x2 = num2cell(rand(1,10));
[y2,xf,af] = netc(x2,xi,ai);

For more information, see Multistep Neural Network Prediction.

Cross-entropy performance measure for enhanced pattern recognition
and classification accuracy
Networks created with patternnet now use the cross-entropy performance measure
(crossentropy), which frequently produces classifiers with fewer percentage misclassifications
than obtained using mean squared error.

See “Softmax transfer function in output layer gives consistent class probabilities for pattern
recognition and classification” on page 17-6.

Softmax transfer function in output layer gives consistent class
probabilities for pattern recognition and classification
patternnet, which you use to create a neural network suitable for learning classification problems,
has been improved in two ways.

First, networks created with patternnet now use the cross-entropy performance measure
(crossentropy), which frequently produces classifiers with fewer percentage misclassifications
than obtained using mean squared error.

Second, patternnet returns networks that use the Soft Max transfer function (softmax) for the
output layer instead of the tansig sigmoid transfer function. softmax results in output vectors
normalized so they sum to 1.0, that can be interpreted as class probabilities. (tansig also produces
outputs in the 0 to 1 range, but they do not sum to 1.0 and have to be manually normalized before
being treated as consistent class probabilities.)

Here a patternnet with 10 neurons is created, its performance function and diagram are displayed.

net = patternnet(10);
net.performFcn

ans =
crossentropy
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view(net)

The output layer’s transfer function is shown with the symbol for softmax.

Training the network takes advantage of the new crossentropy performance function. Here the
network is trained to classify iris flowers. The cross-entropy performance algorithm is shown in the
nntraintool algorithm section. Clicking the “Performance” plot button shows how the network’s
cross-entropy was minimized throughout the training session.

[x,t] = iris_dataset;
net = train(net,x,t);

Simulating the network results in normalized output. Sample 150 is used to illustrate the
normalization of class membership likelihoods:

y = net(x(:,150))

y  =

    0.0001
    0.0528
    0.9471

sum(y)

     1

The network output shows three membership probabilities with class three as by far the most likely.
Each probability value is between 0 and 1, and together they sum to 1 indicating the 100%
probability that the input x(:,150) falls into one of the three classes.

Compatibility Considerations
If a patternnet network is used to train on target data with only one row, the network’s output
transfer function will be changed to tansig and its outputs will continue to operate as they did
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before the softmax enhancement. However, the 1-of-N notation for targets is recommended even
when there are only two classes. In that case the targets should have two rows, where each column
has a 1 in the first or second row to indicate class membership.

If you prefer the older patternnet of mean squared error performance and a sigmoid output
transfer function, you can specify this by setting those neural network object properties. Here is how
that is done for a patternnet with 10 neurons.

net = patternnet(10);
net.layers{2}.transferFcn = 'tansig';
net.performFcn = 'mse';

Automated and periodic saving of intermediate results during neural
network training
Intermediate results can be periodically saved during neural network training to a .mat file for
recovery if the computer fails or the training process is killed. This helps protect the values of long
training runs, which if interrupted, would otherwise need to be completely restarted.

This feature can be especially useful for long parallel training sessions that are more likely to be
interrupted by computing resource failures and which you can stop only with a Ctrl+C break,
because the nntraintool tool (with its Stop button) is not available during parallel training.

Checkpoint saves are enabled with an optional 'CheckpointFile' training argument followed by
the checkpoint file’s name or path. If only a file name is specified, it is placed in the current folder by
default. The file must have the .mat file extension, but if it is not specified it is automatically added.
In this example, checkpoint saves are made to a file called MyCheckpoint.mat in the current folder.

[x,t] = house_dataset;
net = feedforwardnet(10);
net2 = train(net,x,t,'CheckpointFile','MyCheckpoint.mat');

22-Mar-2013 04:49:05 First Checkpoint #1: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 04:49:06 Final Checkpoint #2: /WorkingDir/MyCheckpoint.mat

By default, checkpoint saves occur at most once every 60 seconds. For the short training example
above this results in only two checkpoints, one at the beginning and one at the end of training.

The optional training argument 'CheckpointDelay' changes the frequency of saves. For example,
here the minimum checkpoint delay is set to 10 seconds, for a time-series problem where a neural
network is trained to model a levitated magnet.
[x,t] = maglev_dataset;
net = narxnet(1:2,1:2,10);
[X,Xi,Ai,T] = preparets(net,x,{},t);
net2 = train(net,X,T,Xi,Ai,'CheckpointFile','MyCheckpoint.mat','CheckpointDelay',10);

22-Mar-2013 04:59:28 First Checkpoint #1: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 04:59:38 Write Checkpoint #2: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 04:59:48 Write Checkpoint #3: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 04:59:58 Write Checkpoint #4: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 05:00:08 Write Checkpoint #5: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 05:00:09 Final Checkpoint #6: /WorkingDir/MyCheckpoint.mat

After a computer failure or training interruption, the checkpoint structure containing the best neural
network obtained before the interruption and the training record can be reloaded. In this case the
stage field value is 'Final', indicating the last save was at the final epoch, because training
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completed successfully. The first epoch checkpoint is indicated by 'First', and intermediate
checkpoints by 'Write'.

load('MyCheckpoint.mat')

checkpoint = 

      file: '/WorkingDir/MyCheckpoint.mat'
      time: [2013 3 22 5 0 9.0712]
    number: 6
     stage: 'Final'
       net: [1x1 network]
        tr: [1x1 struct]

Training can be resumed from the last checkpoint by reloading the dataset (if necessary), then calling
train with the recovered network.
net = checkpoint.net;
[x,t] = maglev_dataset;
load('MyCheckpoint.mat');
[X,Xi,Ai,T] = preparets(net,x,{},t);
net2 = train(net,X,T,Xi,Ai,'CheckpointFile','MyCheckpoint.mat','CheckpointDelay',10);

For more information, see Automatically Save Checkpoints During Neural Network Training.

Simpler Notation for Networks with Single Inputs and Outputs
The majority of neural networks have a single input and single output. You can now refer to the input
and output of such networks with the properties net.input and net.output, without the need for
cell array indices.

Here a feed-forward neural network is created and its input and output properties examined.

net = feedforwardnet(10);
net.input
net.output

The net.inputs{1} notation for the input and net.outputs{2} notation for the second layer
output continue to work. The cell array notation continues to be required for networks with multiple
inputs and outputs.

For more information, see Neural Network Object Properties.

Neural Network Efficiency Properties Are Now Obsolete
The neural network property net.efficiency is no longer shown when a network object properties
are displayed. The following line of code displays the properties of a feed-forward network.

net = feedforwardnet(10)

Compatibility Considerations
The efficiency properties are still supported and do not yet generate warnings, so backward
compatibility is maintained. However the recommended way to use memory reduction is no longer to
set net.efficiency.memoryReduction. The recommended notation since R2012b is to use
optional training arguments:
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[x,t] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,x,t,'Reduction',10);

Memory reduction is a way to trade off training time for lower memory requirements when using
Jacobian training such as trainlm and trainbr. The MemoryReduction value indicates how many
passes must be made to simulate the network and calculate its gradients each epoch. The storage
requirements go down as the memory reduction goes up, although not necessarily proportionally. The
default MemoryReduction is 1, which indicates no memory reduction.
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Speed and memory efficiency enhancements for neural network
training and simulation
The neural network simulation, gradient, and Jacobian calculations are reimplemented with native
MEX-functions in Neural Network Toolbox Version 8.0. This results in faster speeds, especially for
small to medium network sizes, and for long time-series problems.

In Version 7, typical code for training and simulating a feed-forward neural network looks like this:

    [x,t] = house_dataset;
    net = feedforwardnet(10);
    view(net)
    net = train(net,x,t);
    y = net(x);

In Version 8.0, the above code does not need to be changed, but calculations now happen in compiled
native MEX code.

Speedups of as much as 25% over Version 7.0 have been seen on a sample system (4-core 2.8 GHz
Intel i7 with 12 GB RAM).

Note that speed improvements measured on the sample system might vary significantly from
improvements measured on other systems due to different chip speeds, memory bandwidth, and
other hardware and software variations.

The following code creates, views, and trains a dynamic NARX neural network model of a maglev
system in open-loop mode.

[x,t] = maglev_dataset;
net = narxnet(1:2,1:2,10);
view(net)
[X,Xi,Ai,T] = preparets(net,x,{},t);
net = train(net,X,T,Xi,Ai);
y = net(X,Xi,Ai)

The following code measures training speed over 10 training sessions, with the training window
disabled to avoid GUI timing interference.

On the sample system, this ran three times (3x) faster in Version 8.0 than in Version 7.0.

rng(0)
[x,t] = maglev_dataset;
net = narxnet(1:2,1:2,10);
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[X,Xi,Ai,T] = preparets(net,x,{},t);
net.trainParam.showWindow = false;
tic
for i=1:10
  net = train(net,X,T,Xi,Ai);
end
toc

The following code trains the network in closed-loop mode:

[x,t] = maglev_dataset;
net = narxnet(1:2,1:2,10);
net = closeloop(net);
view(net)
[X,Xi,Ai,T] = preparets(net,x,{},t);
net = train(net,X,T,Xi,Ai);

For this case, and most closed-loop (recurrent) network training, Version 8.0 ran the code more than
one-hundred times (100x) faster than Version 7.0.

A dramatic example of where the improved closed loop training speed can help is when training a
NARX network model of a double pendulum. By initially training the network in open-loop mode, then
in closed-loop mode with two time step sequences, then three time step sequences, etc., a network
has been trained that can simulate the system for 500 time steps in closed-loop mode. This
corresponds to a 500 step ahead prediction.

Because of the Version 8.0 MEX speedup, this only took a few hours, as opposed to the months it
would have taken in Version 7.0.

MEX code is also far more memory efficient. The amount of RAM used for intermediate variables
during training and simulation is now relatively constant, instead of growing linearly with the number
of samples. In other words, a problem with 10,000 samples requires the same temporary storage as a
problem with only 100 samples.

This memory efficiency means larger problems can be trained on a single computer.
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Compatibility Considerations
For very large networks, MEX code might fall back to MATLAB code. If this happens and memory
availability becomes an issue, use the 'reduction' option to implement memory reduction. The
reduction number indicates the number of passes to make through the data for each calculation.
Each pass calculates with a fraction of the data, and the results are combined after all passes are
complete. This trades off lower memory requirements for longer calculation times.

net = train(net,x,t,'reduction',10);
y = net(x,'reduction',10);

The previous way to indicate memory reduction was to set the
net.efficiency.memoryReduction property before training:

net.efficiency.memoryReduction = N;

This continues to work in Version 8.0, but it is recommended that you update your code to use the
'reduction' option for train and network simulation. Additional name-value pair arguments are the
standard way to indicate calculation options.

Speedup of training and simulation with multicore processors and
computer clusters using Parallel Computing Toolbox
Parallel Computing Toolbox allows Neural Network Toolbox simulation, and gradient and Jacobian
calculations to be parallelized across multiple CPU cores, reducing calculation times. Parallelization
splits the data among several workers. Results for the whole dataset are combined after all workers
have completed their calculations.
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Note that, during training, the calculation of network outputs, performance, gradient, and Jacobian
calculations are parallelized, while the main training code remains on one worker.

To train a network on the house_dataset problem, introduced above, open a local MATLAB pool of
workers, then call train and sim with the new 'useParallel' option set to 'yes'.

matlabpool open
numWorkers = matlabpool('size')

If calling matlabpool produces an error, it might be that Parallel Computing Toolbox is not available.

[x,t] = house_dataset;
net = feedforwardnet(10);
net = train(net,x,t,'useParallel','yes');
y = sim(net,'useParallel','yes');

On the sample system with a pool of four cores, typical speedups have been between 3x and 3.7x.
Using more than four cores might produce faster speeds. For more information, see Parallel and GPU
Computing.
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GPU computing support for training and simulation on single and
multiple GPUs using Parallel Computing Toolbox
Parallel Computing Toolbox allows Neural Network Toolbox simulation and training to be parallelized
across the multiprocessors and cores of a graphics processing unit (GPU).

To train and simulate with a GPU set the 'useGPU' option to 'yes'. Use the gpuDevice command to
get information on your GPU.

gpuInfo = gpuDevice

If calling gpuDevice produces an error, it might be that Parallel Computing Toolbox is not available.

Training on GPUs cannot be done with Jacobian algorithms, such as trainlm or trainbr, but it can
be done with any of the gradient algorithms such as trainscg. If you do not change the training
function, it will happen automatically.

[x,t] = house_dataset;
net = feedforwardnet(10);
net.trainFcn = 'trainscg';
net = train(net,x,t,'useGPU','yes');
y = sim(net,'useGPU','yes');

Speedups on the sample system with an nVidia GTX 470 GPU card have been between 3x and 7x, but
might increase as GPUs continue to improve.

You can also use multiple GPUs. If you set both 'useParallel' and 'useGPU' to 'yes', any
worker associated with a unique GPU will use that GPU, and other workers will use their CPU core. It
is not efficient to share GPUs between workers, as that would require them to perform their
calculations in sequence instead of in parallel.

numWorkers = matlabpool('size')
numGPUs = gpuDeviceCount

[x,t] = house_dataset;
net = feedforwardnet(10);
net.trainFcn = 'trainscg';
net = train(net,x,t,'useParallel','yes','useGPU','yes');
y = sim(net,'useParallel','yes','useGPU','yes');

Tests with three GPU workers and one CPU worker on the sample system have seen 3x or higher
speedup. Depending on the size of the problem, and how much it uses the capacity of each GPU,
adding GPUs might increase speed or might simply increase the size of problem that can be run.

In some cases, training with both GPUs and CPUs can result in slower speeds than just training with
the GPUs, because the CPUs might not keep up with the GPUs. In this case, set 'useGPU' to 'only'
and only GPU workers will be used.

[x,t] = house_dataset;
net = feedforwardnet(10);
net = train(net,x,t,'useParallel','yes','useGPU','only');
y = sim(net,'useParallel','yes','useGPU','only');

For more information, see Parallel and GPU Computing.
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Distributed training of large datasets on computer clusters using
MATLAB Distributed Computing Server
Besides allowing load balancing, Composite data also allows datasets too large to fit within the RAM
of a single computer to be distributed across the RAM of a cluster.

This is done by loading the Composite sequentially. For instance, here the sub-datasets are loaded
from files as they are distributed:

Xc = Composite;
Tc = Composite;
for i=1:10
  data = load(['dataset' num2str(i)])
  Xc{i} = data.x;
  Tc{i} = data.t;
  clear data
end

This technique allows for training with datasets of any size, limited only by the available RAM across
an entire cluster.

For more information, see Parallel and GPU Computing.

Elliot sigmoid transfer function for faster simulation
The new transfer function elliotsig calculates its output without using the exp function used by
both tansig and logsig. This lets it execute much faster, especially on deployment hardware that
might either not support exp or which implements it with software that takes many more execution
cycles than simple arithmetic operations.

This example displays a plot of elliotsig alongside tansig:

n = -10:0.01:10;
a1 = elliotsig(n);
a2 = tansig(n);
h = plot(n,a1,n,a2);
legend(h,'ELLIOTSIG','TANSIG','Location','NorthWest')

To set up a neural network to use the elliotsig transfer function, change each tansig layer’s
transfer function with its transferFcn property. For instance, here a network using elliotsig is
created, viewed, trained, and simulated:
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[x,t] = house_dataset;
net = feedforwardnet(10);
view(net) % View TANSIG network

net.layers{1}.transferFcn = 'elliotsig';
view(net) % View ELLIOTSIG network

net = train(net,x,t);
y = net(x)

The elliotsig transfer function might be even faster on an Intel processor.

n = rand(1000,1000);
tic, for i=1:100, a = elliotsig(n); end, elliotsigTime = toc
tic, for i=1:100, a = tansig(n); end, tansigTime = toc
speedup = tansigTime / elliotsigTime

On one system the speedup was almost 3x.

However, because of the different shape, elliotsig might not result in faster training than tansig.
It might require more training steps. For simulation, elliotsig is always faster.

For more information, see Fast Elliot Sigmoid.

Faster training and simulation with computer clusters using MATLAB
Distributed Computing Server
If a MATLAB pool is opened using a cluster of computers, the previous parallel training and
simulations happen across the CPU cores and GPUs of all the computers in the pool. For problems
with hundreds of thousands or millions of samples, this might result in considerable speedup.
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For more information, see Parallel and GPU Computing.

Load balancing parallel calculations
When training and simulating a network using the 'useParallel' option, the dataset is
automatically divided into equal parts across the workers. However, if different workers have
different speed and memory limitations, it can be helpful to adjust the amount of data sent to each
worker, so that the faster workers or those with more memory have proportionally more data.

This is done using the Parallel Computing Toolbox function Composite. Composite data is data
spread across a parallel pool of MATLAB workers.

For instance, if a parallel pool is open with four workers, data can be distributed as follows:

[x,t] = house_dataset;
Xc = Composite;
Tc = Composite;
Xc{1} = x(:,   1:150); % First  150 samples of x
Tc{1} = x(:,   1:150); % First  150 samples of t
Xc{2} = x(:, 151:300); % Second 150 samples of x
Tc{2} = x(:, 151:300); % Second 150 samples of t
Xc{3} = x(:, 301:403); % Third  103 samples of x
Tc{3} = x(:, 301:403); % Third  103 samples of t
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Xc{4} = x(:, 404:506); % Fourth 103 samples of x
Tc{4} = x(:, 404:506); % Fourth 103 samples of t

When you call train, the 'useParallel' option is not needed, because train automatically trains
in parallel when using Composite data.

net = train(net,Xc,Tc);

If you want workers 1 and 2 to use GPU devices 1 and 2, while workers 3 and 4 use CPUs, set up data
for workers 1 and 2 using nndata2gpu inside an spmd clause.

spmd
  if labindex <= 2
    Xc = nndata2gpu(Xc);
    Tc = nndata2gpu(Tc);
  end
end

The function nndata2gpu takes a neural network matrix or cell array time series data and converts it
to a properly sized gpuArray on the worker’s GPU. This involves transposing the matrices, padding
the columns so their first elements are memory aligned, and combining matrices, if the data was a
cell array of matrices. To reverse process outputs returned after simulation with gpuArray data, use
gpu2nndata to convert back to a regular matrix or a cell array of matrices.

As with 'useParallel', the data type removes the need to specify 'useGPU'. Training and
simulation automatically recognize that two of the workers have gpuArray data and employ their
GPUs accordingly.

net = train(net,Xc,Tc);

This way, any variation in speed or memory limitations between workers can be accounted for by
putting differing numbers of samples on those workers.

For more information, see Parallel and GPU Computing.

Summary and fallback rules of computing resources used from train
and sim
The convention used for computing resources requested by options 'useParallel' and 'useGPU'
is that if the resource is available it will be used. If it is not, calculations still occur accurately, but
without that resource. Specifically:

1 If 'useParallel' is set to 'yes', but no MATLAB pool is open, then computing occurs in the
main MATLAB thread and is not distributed across workers.

2 If 'useGPU' is set to 'yes', but there is not a supported GPU device selected, then computing
occurs on the CPU.
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3 If 'useParallel' and 'useGPU' are set to 'yes', each worker uses a GPU if it is the first
worker with a particular supported GPU selected, or uses a CPU core otherwise.

4 If 'useParallel' is set to 'yes' and 'useGPU' is set to 'only', then only the first worker
with a supported GPU is used, and other workers are not used. However, if no GPUs are
available, calculations revert to parallel CPU cores.

Set the 'showResources' option to 'yes' to check what resources are actually being used, as
opposed to requested for use, when training and simulating.

Example 19.1. Example: View computing resources
[x,t] = house_dataset;
net = feedforwardnet(10);

net2 = train(net,x,t,'showResources','yes');
y = net2(x,'showResources','yes');

Computing Resources:
MEX on PCWIN64

net2 = train(net,x,t,'useParallel','yes','showResources','yes');
y = net2(x,'useParallel','yes','showResources','yes');

Computing Resources:
  Worker 1 on Computer1, MEX on PCWIN64
  Worker 2 on Computer1, MEX on PCWIN64
  Worker 3 on Computer1, MEX on PCWIN64
  Worker 4 on Computer1, MEX on PCWIN64

net2 = train(net,x,t,'useGPU','yes','showResources','yes');
y = net2(x,'useGPU','yes','showResources','yes');

Computing Resources:
GPU device 1, TypeOfCard

net2 = train(net,x,t,'useParallel','yes','useGPU','yes',...
                                              'showResources','yes');
y = net2(x,'useParallel','yes','useGPU','yes','showResources','yes');

Computing Resources:
  Worker 1 on Computer1, GPU device 1, TypeOfCard
  Worker 2 on Computer1, GPU device 2, TypeOfCard
  Worker 3 on Computer1, MEX on PCWIN64
  Worker 4 on Computer1, MEX on PCWIN64

net2 = train(net,x,t,'useParallel','yes','useGPU','only',...
                                               'showResources','yes');
y = net2(x,'useParallel','yes','useGPU','only','showResources','yes');

Computing Resources:
  Worker 1 on Computer1, GPU device 1, TypeOfCard
  Worker 2 on Computer1, GPU device 2, TypeOfCard

Updated code organization
The code organization for data processing, weight, net input, transfer, performance, distance and
training functions are updated. Custom functions of these kinds need to be updated to the new
organization.
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In Version 8.0 the related functions for neural network processing are in package folders, so each
local function has its own file.

For instance, in Version 7.0 the function tansig contained a large switch statement and several local
functions. In Version 8.0 there is a root function tansig, along with several package functions in the
folder /toolbox/nnet/nnet/nntransfer/+tansig/.

    +tansig/activeInputRange.m
    +tansig/apply.m
    +tansig/backprop.m
    +tansig/da_dn.m
    +tansig/discontinuity.m
    +tansig/forwardprop.m
    +tansig/isScalar.m
    +tansig/name.m
    +tansig/outputRange.m
    +tansig/parameterInfo.m
    +tansig/simulinkParameters.m
    +tansig/type.m

Each transfer function has its own package with the same set of package functions. For lists of
processing, weight, net input, transfer, performance, and distance functions, each of which has its
own package, type the following:

    help nnprocess
    help nnweight
    help nnnetinput
    help nntransfer
    help nnperformance
    help nndistance

The calling interfaces for training functions are updated for the new calculation modes and parallel
support. Normally, training functions would not be called directly, but indirectly by train, so this is
unlikely to require any code changes.

Compatibility Considerations
Due to the new package organization for processing, weight, net input, transfer, performance and
distance functions, any custom functions of these types will need to be updated to conform to this
new package system before they will work with Version 8.0.

See the main functions and package functions for mapminmax, dotprod, netsum, tansig, mse, and
dist for examples of this new organization. Any of these functions and its package functions may be
used as a template for new or updated custom functions.

Due to the new calling interfaces for training functions, any custom backpropagation training
function will need to be updated to work with Version 8.0. See trainlm and trainscg for examples
that can be used as templates for any new or updated custom training function.
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New Neural Network Start GUI
The new nnstart function opens a GUI that provides links to new and existing Neural Network
Toolbox GUIs and other resources. The first panel of the GUI opens four "getting started" wizards.

The second panel provides links to other toolbox starting points.

New Time Series GUI and Tools
The new ntstool function opens a wizard GUI that allows time series problems to be solved with
three kinds of neural networks: NARX networks (neural auto-regressive with external input), NAR
networks (neural auto-regressive), and time delay neural networks. It follows a similar format to the
neural fitting (nftool), clustering (nctool), and pattern recognition (nprtool) tools.
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Network diagrams shown in the Neural Time Series Tool, Neural Training Tool, and with the
view(net) command, have been improved to show tap delay lines in front of weights, the sizes of
inputs, layers and outputs, and the time relationship of inputs and outputs. Open loop feedback
outputs and inputs are indicated with matching tab and indents in their respective blocks.

The Save Results panel of the Neural Network Time Series Tool allows you to generate both a Simple
Script, which demonstrates how to get the same results as were obtained with the wizard, and an
Advanced Script, which provides an introduction to more advanced techniques.
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The Train Network panel of the Neural Network Time Series Tool introduces four new plots, which
you can also access from the Network Training Tool and the command line.

The error histogram of any static or dynamic network can be plotted.

plotresponse(errors)

The dynamic response can be plotted, with colors indicating how targets were assigned to training,
validation and test sets across timesteps. (Dividing data by timesteps and other criteria, in addition to
by sample, is a new feature described in “New Time Series Validation” on page 23-7.)

plotresponse(targets,outputs)
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The autocorrelation of error across varying lag times can be plotted.

ploterrcorr(errors)

The input-to-error correlation can also be plotted for varying lags.

plotinerrcorr(inputs,errors)

Simpler time series neural network creation is provided for NARX and time-delay networks, and a
new function creates NAR networks. All the network diagrams shown here are generated with the
command view(net).

net = narxnet(inputDelays, feedbackDelays, hiddenSizes, 
feedbackMode, trainingFcn
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net = narnet(feedbackDelays, hiddenSizes, feedbackMode, 
trainingFcn)
net = timedelaynet(inputDelays, hiddenSizes, trainingFcn)

Several new data sets provide sample problems that can be solved with these networks. These data
sets are also available within the ntstool GUI and the command line.

[x, t] = simpleseries_dataset;
[x, t] = simplenarx_dataset;
[x, t] = exchanger_dataset;
[x, t] = maglev_dataset;
[x, t] = ph_dataset;
[x, t] = pollution_dataset;
[x, t] = refmodel_dataset;
[x, t] = robotarm_dataset;
[x, t] = valve_dataset;

The preparets function formats input and target time series for time series networks, by shifting
the inputs and targets as needed to fill initial input and layer delay states. This function simplifies
what is normally a tricky data preparation step that must be customized for details of each kind of
network and its number of delays.

[x, t] = simplenarx_dataset;
net = narxnet(1:2, 1:2, 10);
[xs, xi, ai, ts] = preparets(net, x, {}, t);
net = train(net, xs, ts, xi, ai);
y = net(xs, xi, ai)

The output-to-input feedback of NARX and NAR networks (or custom time series network with
output-to-input feedback loops) can be converted between open- and closed-loop modes using the two
new functions closeloop and openloop.

net = narxnet(1:2, 1:2, 10);
net = closeloop(net)
net = openloop(net)

The total delay through a network can be adjusted with the two new functions removedelay and
adddelay. Removing a delay from a NARX network which has a minimum input and feedback delay
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of 1, so that it now has a minimum delay of 0, allows the network to predict the next target value a
timestep ahead of when that value is expected.

net = removedelay(net)
net = adddelay(net)

The new function catsamples allows you to combine multiple time series into a single neural
network data variable. This is useful for creating input and target data from multiple input and target
time series.

x = catsamples(x1, x2, x3);
t = catsamples(t1, t2, t3);

In the case where the time series are not the same length, the shorter time series can be padded with
NaN values. This will indicate “don't care” or equivalently “don't know” input and targets, and will
have no effect during simulation and training.

x = catsamples(x1, x2, x3, 'pad')
t = catsamples(t1, t2, t3, 'pad')

Alternatively, the shorter series can be padded with any other value, such as zero.

x = catsamples(x1, x2, x3, 'pad', 0)

There are many other new and updated functions for handling neural network data, which make it
easier to manipulate neural network time series data.

help nndatafun

New Time Series Validation
Normally during training, a data set's targets are divided up by sample into training, validation and
test sets. This allows the validation set to stop training at a point of optimal generalization, and the
test set to provide an independent measure of the network's accuracy. This mode of dividing up data
is now indicated with a new property:

net.divideMode = 'sample'

However, many time series problems involve only a single time series. In order to support validation
you can set the new property to divide data up by timestep. This is the default setting for NARXNET
and other time series networks.

net.divideMode = 'time'

This property can be set manually, and can be used to specify dividing up of targets across both
sample and timestep, by all target values (i.e., across sample, timestep, and output element), or not to
perform data division at all.
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net.divideMode = 'sampletime'
net.divideMode = 'all'
net.divideMode = 'none'

New Time Series Properties
Time series feedback can also be controlled manually with new network properties that represent
output-to-input feedback in open- or closed-loop modes. For open-loop feedback from an output from
layer i back to input j, set these properties as follows:

net.inputs{j}.feedbackOutput = i
net.outputs{i}.feedbackInput = j
net.outputs{i}.feedbackMode = 'open'

When the feedback mode of the output is set to 'closed', the properties change to reflect that the
output-to-input feedback is now implemented with internal feedback by removing input j from the
network, and having output properties as follows:

net.outputs{i}.feedbackInput = [];
net.outputs{i}.feedbackMode = 'closed'

Another output property keeps track of the proper closed-loop delay, when a network is in open-loop
mode. Normally this property has this setting:

net.outputs{i}.feedbackDelay = 0

However, if a delay is removed from the network, it is updated to 1, to indicate that the network's
output is actually one timestep ahead of its inputs, and must be delayed by 1 if it is to be converted to
closed-loop form.

net.outputs{i}.feedbackDelay = 1

New Flexible Error Weighting and Performance
Performance functions have a new argument list that supports error weights for indicating which
target values are more important than others. The train function also supports error weights.

net = train(net, x, t, xi, ai, ew)
perf = mse(net, x, t, ew)

You can define error weights by sample, output element, time step, or network output:

ew = [1.0 0.5 0.7 0.2];      % Weighting errors across 4 samples
ew = [0.1; 0.5; 1.0];        % ... across 3 output elements
ew = {0.1 0.2 0.3 0.5 1.0};  % ... across 5 timesteps
ew = {1.0; 0.5};             % ... across 2 network outputs

These can also be defined across any combination. For example, weighting error across two time
series (i.e., two samples) over four timesteps:

ew = {[0.5 0.4], [0.3 0.5], [1.0 1.0], [0.7 0.5]};

In the general case, error weights can have exactly the same dimension as targets, where each target
has an associated error weight.
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Some performance functions are now obsolete, as their functionality has been implemented as
options within the four remaining performance functions: mse, mae, sse, and sae.

The regularization implemented in msereg and msnereg is now implemented with a performance
property supported by all four remaining performance functions.

% Any value between the default 0 and 1.
net.performParam.regularization 

The error normalization implemented in msne and msnereg is now implemented with a normalization
property.

% Either 'normalized', 'percent', or the default 'none'.
net.performParam.normalization 

A third performance parameter indicates whether error weighting is applied to square errors (the
default for mse and sse) or the absolute errors (mae and sae).

net.performParam.squaredWeighting  % true or false

Compatibility Considerations
The old performance functions and old performance arguments lists continue to work as before, but
are no longer recommended.

New Real Time Workshop and Improved Simulink Support
Neural network Simulink blocks now compile with Real Time Workshop® and are compatible with
Rapid Accelerator mode.

gensim has new options for generating neural network systems in Simulink.

Name - the system name
SampleTime - the sample time
InputMode - either port, workspace, constant, or none.
OutputMode - either display, port, workspace, scope, or none
SolverMode - either default or discrete

For instance, here a NARX network is created and set up in MATLAB to use workspace inputs and
outputs.
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[x, t] = simplenarx_dataset;
net = narxnet(1:2, 1:2, 10);
[xs, xi, ai, ts] = preparets(net, x, {}, t);
net = train(net, xs, ts, xi, ai);
net = closeloop(net);
[sysName, netName] = gensim(net, 'InputMode', 'workspace', ...
           'OutputMode', 'workspace', 'SolverMode', 'discrete');

Simulink neural network blocks now allow initial conditions for input and layer delays to be set
directly by double-clicking the neural network block. setsiminit and getsiminit provide
command-line control for setting and getting input and layer delays for a neural network Simulink
block.

setsiminit(sysName, netName, net, xi, ai);

New Documentation Organization and Hyperlinks
The User's Guide has been rearranged to better focus on the workflow of practical applications. The
Getting Started section has been expanded.

References to functions throughout the online documentation and command-line help now link
directly to their function pages.

help feedforwardnet

The command-line output of neural network objects now contains hyperlinks to documentation. For
instance, here a feed-forward network is created and displayed. Its command-line output contains
links to network properties, function reference pages, and parameter information.

net = feedforwardnet(10);

Subobjects of the network, such as inputs, layers, outputs, biases, weights, and parameter lists also
display with links.

net.inputs{1}
net.layers{1}
net.outputs{2}
net.biases{1}
net.inputWeights{1, 1}
net.trainParam
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The training tool nntraintool and the wizard GUIs nftool, nprtool, nctool, and ntstool,
provide numerous hyperlinks to documentation.

New Derivative Functions and Property
New functions give convenient access to error gradient (of performance with respect to weights and
biases) and Jacobian (of error with respect to weights and biases) calculated by various means.

staticderiv - Backpropagation for static networks
bttderiv - Backpropagation through time
fpderiv - Forward propagation
num2deriv - Two-point numerical approximation
num5deriv - Five-point numerical approximation
defaultderiv - Chooses recommended derivative function for the network

For instance, here you can calculate the error gradient for a newly created and configured
feedforward network.

net = feedforwardnet(10);
[x, t] = simplefit_dataset;
net = configure(net, x, t);
d = staticderiv('dperf_dwb', net, x, t)

Improved Network Creation
New network creation functions have clearer names, no longer need example data, and have
argument lists reduced to only the arguments recommended for most applications. All arguments
have defaults, so you can create simple networks by calling network functions without any
arguments. New networks are also more memory efficient, as they no longer need to store sample
input and target data for proper configuration of input and output processing settings.

% New function
net = feedforwardnet(hiddenSizes, trainingFcn)

% Old function
net = newff(x,t,hiddenSizes, transferFcns, trainingFcn, ...
      learningFcn, performanceFcn, inputProcessingFcns, ...
      outputProcessingFcns, dataDivisionFcn)

The new functions (and the old functions they replace) are:

feedforwardnet (newff)
cascadeforwardnet (newcf)
competlayer (newc)
distdelaynet (newdtdnn)
elmannet (newelm)
fitnet (newfit)
layrecnet (newlrn)
linearlayer (newlin)
lvqnet (newlvq)
narxnet (newnarx, newnarxsp)
patternnet (newpr)
perceptron (newp)
selforgmap (newsom)
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timedelaynet (newtdnn)

The network's inputs and outputs are created with size zero, then configured for data when train is
called or by optionally calling the new function configure.

net = configure(net, x, t)

Unconfigured networks can be saved and reused by configuring them for many different problems.
unconfigure sets a configured network's inputs and outputs to zero, in a network which can later
be configured for other data.

net = unconfigure(net)

Compatibility Considerations
Old functions continue working as before, but are no longer recommended.

Improved GUIs
The neural fitting nftool, pattern recognition nprtool, and clustering nctool GUIs have been
updated with links back to the nnstart GUI. They give the option of generating either simple or
advanced scripts in their last panel. They also confirm with you when closing, if a script has not been
generated, or the results not yet saved.

Improved Memory Efficiency
Memory reduction, the technique of splitting calculations up in time to reduce memory requirements,
has been implemented across all training algorithms for both gradient and network simulation
calculations. Previously it was only supported for gradient calculations with trainlm and trainbr.

To set the memory reduction level, use this new property. The default is 1, for no memory reduction.
Setting it to 2 or higher splits the calculations into that many parts.

net.efficiency.memoryReduction

Compatibility Considerations
The trainlm and trainbr training parameter MEM_REDUC is now obsolete. References to it will
need to be updated. Code referring to it will generate a warning.

Improved Data Sets
All data sets in the toolbox now have help, including example solutions, and can be accessed as
functions:

help simplefit_dataset
[x, t] = simplefit_dataset;

See help for a full list of sample data sets:

help nndatasets
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Updated Argument Lists
The argument lists for the following types of functions, which are not generally called directly, have
been updated.

The argument list for training functions, such as trainlm, traingd, etc., have been updated to
match train. The argument list for the adapt function adaptwb has been updated. The argument list
for the layer and network initialization functions, initlay, initnw, and initwb have been updated.

Compatibility Considerations
Any custom functions of these types, or code which calls these functions manually, will need to be
updated.
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New Training GUI with Animated Plotting Functions
Training networks with the train function now automatically opens a window that shows the
network diagram, training algorithm names, and training status information.

The window also includes buttons for plots associated with the network being trained. These buttons
launch the plots during or after training. If the plots are open during training, they update every
epoch, resulting in animations that make understanding network performance much easier.

The training window can be opened and closed at the command line as follows:

nntraintool
nntraintool('close')

Two plotting functions associated with the most networks are:

• plotperform—Plot performance.
• plottrainstate—Plot training state.

Compatibility Considerations
To turn off the new training window and display command-line output (which was the default display
in previous versions), use these two training parameters:

net.trainParam.showWindow = false;
net.trainParam.showCommandLine = true;

New Pattern Recognition Network, Plotting, and Analysis GUI
The nprtool function opens a GUI wizard that guides you to a neural network solution for pattern
recognition problems. Users can define their own problems or use one of the new data sets provided.

The newpr function creates a pattern recognition network at the command line. Pattern recognition
networks are feed-forward networks that solve problems with Boolean or 1-of-N targets and have
confusion (plotconfusion) and receiver operating characteristic (plotroc) plots associated with
them.

The new confusion function calculates the true/false, positive/negative results from comparing
network output classification with target classes.

New Clustering Training, Initialization, and Plotting GUI
The nctool function opens a GUI wizard that guides you to a self-organizing map solution for
clustering problems. Users can define their own problem or use one of the new data sets provided.

The initsompc function initializes the weights of self-organizing map layers to accelerate training.
The learnsomb function implements batch training of SOMs that is orders of magnitude faster than
incremental training. The newsom function now creates a SOM network using these faster
algorithms.

Several new plotting functions are associated with self-organizing maps:

• plotsomhits—Plot self-organizing map input hits.
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• plotsomnc—Plot self-organizing map neighbor connections.
• plotsomnd—Plot self-organizing map neighbor distances.
• plotsomplanes—Plot self-organizing map input weight planes.
• plotsompos—Plot self-organizing map weight positions.
• plotsomtop—Plot self-organizing map topology.

Compatibility Considerations
You can call the newsom function using conventions from earlier versions of the toolbox, but using its
new calling conventions gives you faster results.

New Network Diagram Viewer and Improved Diagram Look
The new neural network diagrams support arbitrarily connected network architectures and have an
improved layout. Their visual clarity has been improved with color and shading.

Network diagrams appear in all the Neural Network Toolbox graphical interfaces. In addition, you
can open a network diagram viewer of any network from the command line by typing

view(net)

New Fitting Network, Plots and Updated Fitting GUI
The newfit function creates a fitting network that consists of a feed-forward backpropagation
network with the fitting plot (plotfit) associated with it.

The nftool wizard has been updated to use newfit, for simpler operation, to include the new
network diagrams, and to include sample data sets. It now allows a Simulink block version of the
trained network to be generated from the final results panel.

Compatibility Considerations
The code generated by nftool is different the code generated in previous versions. However, the
code generated by earlier versions still operates correctly.

 

28-3

https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/plotsomnc.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/plotsomnd.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/plotsomplanes.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/plotsompos.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/plotsomtop.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/plotfit.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/nftool.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/nftool.html




R2007b

Version: 5.1

New Features

Bug Fixes

Compatibility Considerations

29



Simplified Syntax for Network-Creation Functions
The following network-creation functions have new input arguments to simplify the network creation
process:

• newcf
• newff
• newdtdnn
• newelm
• newfftd
• newlin
• newlrn
• newnarx
• newnarxsp

For detailed information about each function, see the corresponding reference pages.

Changes to the syntax of network-creation functions have the following benefits:

• You can now specify input and target data values directly. In the previous release, you specified
input ranges and the size of the output layer instead.

• The new syntax automates preprocessing, data division, and postprocessing of data.

For example, to create a two-layer feed-forward network with 20 neurons in its hidden layer for a
given a matrix of input vectors p and target vectors t, you can now use newff with the following
arguments:

net = newff(p,t,20);

This command also sets properties of the network such that the functions sim and train
automatically preprocess inputs and targets, and postprocess outputs.

In the previous release, you had to use the following three commands to create the same network:

pr = minmax(p);
s2 = size(t,1);
net = newff(pr,[20 s2]);

Compatibility Considerations
Your existing code still works but might produce a warning that you are using obsolete syntax.

Automated Data Preprocessing and Postprocessing During Network
Creation
Automated data preprocessing and postprocessing occur during network creation in the Network/
Data Manager GUI (nntool), Neural Network Fitting Tool GUI (nftool), and at the command line.

At the command line, the new syntax for using network-creation functions, automates preprocessing,
postprocessing, and data-division operations.
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For example, the following code returns a network that automatically preprocesses the inputs and
targets and postprocesses the outputs:

net = newff(p,t,20);
net = train(net,p,t);
y = sim(net,p);

To create the same network in a previous release, you used the following longer code:

[p1,ps1] = removeconstantrows(p);
[p2,ps2] = mapminmax(p1);
[t1,ts1] = mapminmax(t);
pr = minmax(p2);
s2 = size(t1,1);
net = newff(pr,[20 s2]);
net = train(net,p2,t1);
y1 = sim(net,p2)
y = mapminmax('reverse',y1,ts1);

Default Processing Settings

The default input processFcns functions returned with a new network are, as follows:

net.inputs{1}.processFcns = ... 
              {'fixunknowns','removeconstantrows', 'mapminmax'}

These three processing functions perform the following operations, respectively:

• fixunknowns—Encode unknown or missing values (represented by NaN) using numerical values
that the network can accept.

• removeconstantrows—Remove rows that have constant values across all samples.
• mapminmax—Map the minimum and maximum values of each row to the interval [-1 1].

The elements of processParams are set to the default values of the fixunknowns,
removeconstantrows, and mapminmax functions.

The default output processFcns functions returned with a new network include the following:

net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}

These defaults process outputs by removing rows with constant values across all samples and
mapping the values to the interval [-1 1].

sim and train automatically process inputs and targets using the input and output processing
functions, respectively. sim and train also reverse-process network outputs as specified by the
output processing functions.

For more information about processing input, target, and output data, see “Multilayer Networks and
Backpropagation Training” in the Neural Network Toolbox User's Guide.

Changing Default Input Processing Functions

You can change the default processing functions either by specifying optional processing function
arguments with the network-creation function, or by changing the value of processFcns after
creating your network.
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You can also modify the default parameters for each processing function by changing the elements of
the processParams properties.

After you create a network object (net), you can use the following input properties to view and
modify the automatic processing settings:

• net.inputs{1}.exampleInput—Matrix of example input vectors
• net.inputs{1}.processFcns—Cell array of processing function names
• net.inputs{1}.processParams—Cell array of processing parameters

The following input properties are automatically set and you cannot change them:

• net.inputs{1}.processSettings—Cell array of processing settings
• net.inputs{1}.processedRange—Ranges of example input vectors after processing
• net.inputs{1}.processedSize—Number of input elements after processing

Changing Default Output Processing Functions

After you create a network object (net), you can use the following output properties to view and
modify the automatic processing settings:

• net.outputs{2}.exampleOutput—Matrix of example output vectors
• net.outputs{2}.processFcns—Cell array of processing function names
• net.outputs{2}.processParams—Cell array of processing parameters

Note These output properties require a network that has the output layer as the second layer.

The following new output properties are automatically set and you cannot change them:

• net.outputs{2}.processSettings—Cell array of processing settings
• net.outputs{2}.processedRange—Ranges of example output vectors after processing
• net.outputs{2}.processedSize—Number of input elements after processing

Automated Data Division During Network Creation
When training with supervised training functions, such as the Levenberg-Marquardt backpropagation
(the default for feed-forward networks), you can supply three sets of input and target data. The first
data set trains the network, the second data set stops training when generalization begins to suffer,
and the third data set provides an independent measure of network performance.

Automated data division occurs during network creation in the Network/Data Manager GUI, Neural
Network Fitting Tool GUI, and at the command line.

At the command line, to create and train a network with early stopping that uses 20% of samples for
validation and 20% for testing, you can use the following code:

net = newff(p,t,20);
net = train(net,p,t);

Previously, you entered the following code to accomplish the same result:
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pr = minmax(p);
s2 = size(t,1);
net = newff(pr,[20 s2]);
[trainV,validateV,testV] = dividevec(p,t,0.2,0.2);
[net,tr] = train(net,trainV.P,trainV.T,[],[],validateV,testV);

For more information about data division, see “Multilayer Networks and Backpropagation Training”
in the Neural Network Toolbox User's Guide.

New Data Division Functions

The following are new data division functions:

• dividerand—Divide vectors using random indices.
• divideblock—Divide vectors in three blocks of indices.
• divideint—Divide vectors with interleaved indices.
• divideind—Divide vectors according to supplied indices.

Default Data Division Settings

Network creation functions return the following default data division properties:

• net.divideFcn = 'dividerand'
• net.divedeParam.trainRatio = 0.6;
• net.divideParam.valRatio = 0.2;
• net.divideParam.testRatio = 0.2;

Calling train on the network object net divided the set of input and target vectors into three sets,
such that 60% of the vectors are used for training, 20% for validation, and 20% for independent
testing.

Changing Default Data Division Settings

You can override default data division settings by either supplying the optional data division
argument for a network-creation function, or by changing the corresponding property values after
creating the network.

After creating a network, you can view and modify the data division behavior using the following new
network properties:

• net.divideFcn—Name of the division function
• net.divideParam—Parameters for the division function

New Simulink Blocks for Data Preprocessing
New blocks for data processing and reverse processing are available. For more information, see
“Processing Blocks” in the Neural Network Toolbox User's Guide.

The function gensim now generates neural networks in Simulink that use the new processing blocks.

 

29-5

https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/dividerand.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/divideblock.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/divideint.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/divideind.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/train.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/gensim.html


Properties for Targets Now Defined by Properties for Outputs
The properties for targets are now defined by the properties for outputs. Use the following properties
to get and set the output and target properties of your network:

• net.numOutputs—The number of outputs and targets
• net.outputConnect—Indicates which layers have outputs and targets
• net.outputs—Cell array of output subobjects defining each output and its target

Compatibility Considerations
Several properties are now obsolete, as described in the following table. Use the new properties
instead.

Recommended Property Obsolete Property
net.numOutputs net.numTargets
net.outputConnect net.targetConnect
net.outputs net.targets
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Dynamic Neural Networks
Version 5.0 now supports these types of dynamic neural networks:

Time-Delay Neural Network

Both focused and distributed time-delay neural networks are now supported. Continue to use the
newfftd function to create focused time-delay neural networks. To create distributed time-delay
neural networks, use the newdtdnn function.

Nonlinear Autoregressive Network (NARX)

To create parallel NARX configurations, use the newnarx function. To create series-parallel NARX
networks, use the newnarxsp function. The sp2narx function lets you convert NARX networks from
series-parallel to parallel configuration, which is useful for training.

Layer Recurrent Network (LRN)

Use the newlrn function to create LRN networks. LRN networks are useful for solving some of the
more difficult problems in filtering and modeling applications.

Custom Networks

The training functions in Neural Network Toolbox are enhanced to let you train arbitrary custom
dynamic networks that model complex dynamic systems. For more information about working with
these networks, see the Neural Network Toolbox documentation.

Wizard for Fitting Data
The new Neural Network Fitting Tool (nftool) is now available to fit your data using a neural
network. The Neural Network Fitting Tool is designed as a wizard and walks you through the data-
fitting process step by step.

To open the Neural Network Fitting Tool, type the following at the MATLAB prompt:

nftool

Data Preprocessing and Postprocessing
Version 5.0 provides the following new data preprocessing and postprocessing functionality:

dividevec Automatically Splits Data

The dividevec function facilitates dividing your data into three distinct sets to be used for training,
cross validation, and testing, respectively. Previously, you had to split the data manually.

fixunknowns Encodes Missing Data

The fixunknowns function encodes missing values in your data so that they can be processed in a
meaningful and consistent way during network training. To reverse this preprocessing operation and
return the data to its original state, call fixunknowns again with 'reverse' as the first argument.
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removeconstantrows Handles Constant Values

removeconstantrows is a new helper function that processes matrices by removing rows with
constant values.

mapminmax, mapstd, and processpca Are New

The mapminmax, mapstd, and processpca functions are new and perform data preprocessing and
postprocessing operations.

Compatibility Considerations
Several functions are now obsolete, as described in the following table. Use the new functions
instead.

New Function Obsolete Functions
mapminmax premnmx

postmnmx
tramnmx

mapstd prestd
poststd
trastd

processpca prepca
trapca

Each new function is more efficient than its obsolete predecessors because it accomplishes both
preprocessing and postprocessing of the data. For example, previously you used premnmx to process
a matrix, and then postmnmx to return the data to its original state. In this release, you accomplish
both operations using mapminmax; to return the data to its original state, you call mapminmax again
with 'reverse' as the first argument:

mapminmax('reverse',Y,PS) 

Derivative Functions Are Obsolete
The following derivative functions are now obsolete:

ddotprod
dhardlim
dhardlms
dlogsig
dmae
dmse
dmsereg
dnetprod
dnetsum
dposlin
dpurelin
dradbas
dsatlin
dsatlins
dsse
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dtansig
dtribas

Each derivative function is named by prefixing a d to the corresponding function name. For example,
sse calculates the network performance function and dsse calculated the derivative of the network
performance function.

Compatibility Considerations
To calculate a derivative in this version, you must pass a derivative argument to the function. For
example, to calculate the derivative of a hyperbolic tangent sigmoid transfer function A with respect
to N, use this syntax:

A = tansig(N,FP)
dA_dN = tansig('dn',N,A,FP)

Here, the argument 'dn' requests the derivative to be calculated.
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